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ABSTRACT

Applying SIMD parallelization to irregular applications with non-
continuous and data-dependent memory accesses is challenging.
While an application involving a static pattern of indirect accesses
(across iterations) can be accelerated by data transformations, such
techniques are no longer feasible if the indirect access patterns
change over time. In this paper, we propose an indexing method
that facilitates the reuse of data reorganization for efficient SIMD
parallelization of dynamic irregular applications. This indexing
approach is first applied on a class of vertex-centric graph algo-
rithms where the set of active vertices varies over the execution —
the indexing method helps maintain the set of active edges. Next,
we focus on unstructured particle interaction applications in which
the edges change adaptively, and present an incremental indexing
method. In our experimental evaluation, the speedups achieved by
utilizing SIMD on graph applications range from 3.04x to 7.19x,
and between 2.54x to 4.43x for molecular dynamics.

1. INTRODUCTION

SIMD has been a common feature in popular processors for sev-
eral years. Regular applications can easily benefit from SIMD ex-
ecution because of continuous and statically determined memory
access patterns. However, applying SIMD efficiently to irregu-
lar applications, examples of which include graph algorithms and
particle-in-cell or N-body applications, is challenging. In such
applications, the first issue is that the memory accesses are non-
continuous and data-dependent. Although newer SIMD instruction
sets include gather (scatter) instructions that support non-continuous
memory accesses for loading (storing) a vector, performance of ap-
plications using these features largely depends on the memory dis-
tances [3]. The second issue is that indirection-based writes in cer-
tain applications can cause data conflicts, which must be avoided
or removed at runtime.

Numerous efforts have been made on transforming irregular mem-
ory access patterns to achieve better memory access performance [4,
5, 6,7, 15]. These methods can be viewed as an application of the
well known inspector-executor paradigm, previously researched in
the context of distributed memory execution [2]. Transforming
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memory access patterns can effectively improve the cache perfor-
mance, and thus SIMD utilization, in irregular applications. How-
ever, these transformations can be expensive. If an irregular appli-
cation has the same pattern for the entire execution (for example,
interactions between vertices or cells do not change across itera-
tions), the preprocessing costs associated with the transformations
are easily amortized, but this may not always be the case.

We now discuss the challenges associated with one particular set
of applications. Consider vertex-centric graph algorithms such as
Breadth First Search (BFS) and Single Source Shortest Path (SSSP).
The active vertices and edges in these applications vary over iter-
ations or supersteps [14] — only the vertices that receive messages
from the previous superstep or whose values were updated in the
previous superstep are considered active. Now, let us consider the
potential options for SIMDization of these applications. Simply
vectorizing the computation of each vertex leads to poor memory
locality, because a vertex may access the values of distant vertices
through its adjacency list. In addition, we likely have a poor SIMD
utilization ratio because the size of the adjacency list of certain ver-
tices can be (much) smaller than the SIMD vector length. In fact,
Harish ef al. [8] and Hong et al. [9] accelerate graph algorithms
on GPU in this manner (i.e. processing vertex’s neighbors in par-
allel), and their approach leads to non-coalesced memory accesses
and load imbalance. Another approach has been taken by Merrill
et al. [16], which involves maintaining the frontiers based on ver-
tices most recently explored, and applies SIMD on the frontiers.
Neither of them consider memory locality as a critical factor that
influences the performance. At the same time, improving memory
locality is non-trivial, since the memory access patterns are both
data-dependent and dynamic in these graph applications. Finally,
Chen et al. [3] apply tiling on a sparse matrix representation of a
graph algorithm to achieve better memory locality for SIMD op-
erations. However, their methods are also not applicable to graph
applications where memory access patterns change over time.

Graph algorithms are not the only class of irregular applications
with dynamic changes in memory accesses over time. Another ex-
ample is a particle interaction or N-body application like Molec-
ular Dynamics. Here, as particles or molecules move over time,
the neighbor lists need to be rebuilt every few iterations. Chen et
al. [3] propose a tiling-and-grouping approach, which can also be
seen as an application of the inspector-executor idea, tailored for
efficient SIMD execution. Although this approach does improve
memory locality and remove the write conflicts during a static pe-
riod of the simulation, their approach requires tiling-and-grouping
for the entire set of interaction edges after each neighbor rebuild-
ing step. Though incremental inspectors have been proposed in the
distributed memory execution context [10], the issues in designing
(incremental) inspectors for SIMD execution are very different.



In this paper, we present a method for efficient SIMD paralleliza-
tion of irregular applications with time varying data access pat-
terns. Our method further builds on the tiling-and-grouping idea
proposed by Chen et al. [3], which was applied only on the static
irregular applications. They observe that computations in many ir-
regular reductions and graph algorithms can be seen as operations
on a sparse matrix. Based on this observation they show that tiling
the sparse matrix, followed by grouping nonzeros in each tile, can
improve the memory access performance and resolve the data con-
flicts caused by indirection-based memory writes. However, their
method assumes, or is effective, only when 1) the sparse matrices
representing the grids/graphs do not change across iterations or su-
persteps, and 2) all nonzeros in the sparse matrix are involved in
computation in each iteration.

In this work, we show that by introducing a new data structure
— an index of tiling and grouping information — we can efficiently
reuse the data reorganization and achieve good SIMD performance
even when the accesses are more dynamic. We have developed
a vertex-centric graph processing framework that applies SIMD
processing to tiles and groups, leading to better memory locality
and SIMD utilization compared with applying SIMD processing
directly on vertices. This framework provides an API that is similar
to Pregel [14], which allows programmers to easily specify graph
applications. In addition, we develop a similar idea for particle in-
teraction applications where the list of interactions (edges) changes
over time. We show that by incrementally tiling and grouping the
interaction lists and maintaining the index, the data reorganization
of existing neighbor edges can be efficiently reused.

2. BACKGROUND

This section provides background on the irregular applications
we target, a popular graph API, the Intel Xeon Phi coprocessor (lat-
est commercial release of Intel Many Integrated Core (MIC) archi-
tecture), and a tiling-and-grouping optimization approach proposed
in recent work [3].

2.1 [Irregular Applications

Irregular applications are a broad class of applications that in-
volve unstructured data accesses and/or irregular control flows. Ac-
cording to their memory access patterns, we find that most irregular
applications belong to one of the three categories: static irregular,
dynamic irregular, and adaptive dynamic irregular. We use three
examples to demonstrate each of these categories.

2.1.1 Static Irregular

Figure 1 shows a code snippet from Bellman-Ford algorithm,
which computes the shortest path between a single source vertex
and every other vertex in the graph. The inner loop iterates over
all edges in the graph, and in each iteration, the current distances
of vertices nl and n2 are read from array Dis. The memory ac-
cesses of array Dis are dependent on the contents of array Edges
and are generally non-continuous. There is also a conditional up-
date of vertex n2’s distance that leads to irregular control flow and
potential conflict writes. In summary, the memory accesses are
non-continuous and data-dependent. It is noteworthy that in the
code snippet of Bellman-Ford algorithm, each iteration of the outer
loop iterates over all the edges in the graph, and furthermore, no
edges are added or removed during the execution. So, the inner
loop accesses the same positions in memory across the iterations of
outer loop. The memory access patterns in these applications are
considered as static irregular. This kind of irregularity can be elim-
inated or at least mitigated by a preprocessing phase involving data
reorganization [3, 4, 20, 5]. Once the data is reorganized, the op-

int Edges[numEdges] [2];
float Dis[numVertices];
float Weights[numEdges]
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for(int 1 = 0; 1 < numVertices; i++) {
for(int j = 0; j < numEdges; j++) {
// get the two vertices connected by edge j
int nl = Edges[3j][0];
int n2 = Edges[j][1];
// get the current distances of vertex nl and n2
float dl = Dis[nl];
float d2 = Dis[n2];
// get the weight of edge j
float w = Weight[j];
if(d2 > dl + w) {
Dis[n2] = dl + w;
}

Figure 1: Code snippet for Bellman-Ford algorithm

class SSSPVertex: public Vertex {

public:
void Compute (Messagelterator* msgs) {
if (superstep ()==0) xMutableValue() = INF;
float mindist = IsSource (vertex_id()) ? 0 : INF;
while (! (msgs->Done())) {

mindist = mindist < msgs->Value() ? mindist
: msgs->Value () ;
msgs—>Next () ;
}
if (mindist < GetValue()) {

*MutableValue () = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

for(;!iter.Done();iter.Next ()) {
SendMessageTo (iter.Target (), mindist +

iter.GetValue());
}
} else {
VoteToHalt () ;

Figure 2: Code snippet for Vertex-Centric SSSP

timizations are applicable over the entire execution, and thus, their
cost is amortized.

2.1.2  Dynamic Irregular

Not all irregular applications have static data access patterns.
Figure 2 shows a code snippet from the vertex-centric SSSP al-
gorithm, which is essentially a wavefront based Bellman-Ford im-
plementation, and turns out to be more efficient for graphs with no
negative cycles. We will show that the memory access patterns in
these graph applications are not static. Before that, we first intro-
duce vertex-centric graph processing models and their typical API
functions.

Vertex-centric graph processing frameworks, such as Pregel [14],
GPS [18] and CuSha [11], provide easy development and efficient
execution of graph algorithms. To summarize [14], the key aspect
of these frameworks is that “Programs are expressed as a sequence
of iterations, in each of which a vertex can receive messages from
the previous iteration, send messages to neighbor vertices, and
modify its own state and that of its outgoing edges”. The under-
lying parallelization is applied to the wavefront (set of vertices that
are active) in every synchronization phase, which is also referred to
as a superstep.

To make the idea concrete, we show the typical set of functions
in these frameworks in Table 1. Programmers need to define a class




API

Description

void Compute (Messagelterator xmsgs);
OutEdgeIterator GetOutEdgelterator();

void SendMessageTo (int target_id, MsgType val);
int superstep();

NodeType xMutableValue();

NodeType GetValue();

void VoteToHalt ();

Implemented by programmer to express computation in a vertex

Returns all the outgoing edges of a vertex

Sends message to a target vertex

Returns the superstep the execution is in

Returns a pointer to the vertex’s state

Returns the value of the vertex’s state

Informs the framework not to execute Compute for this vertex in next superstep

Table 1: Common API functions in Vertex-Centric graph frameworks

inherited from Vertex and implement the Compute interface to
express the computation on each vertex. During a superstep, the
framework invokes user-defined Compute function for each ver-
tex in parallel. A vertex can get all of its outgoing edges by calling
GetOutEdgeIterator. It can send messages to neighbor ver-
tices by calling SendMessageTo, which accepts two parameters
— the first is the target vertex identifier and the second the message
value. The framework maintains an incoming message buffer for
each vertex and passes a handler of that buffer to Compute as a
parameter. MutableValue is used to access a vertex’s own state.

The vertex-centric SSSP in Figure 2 is a wavefront based version
of the Bellman-Ford algorithm. Iterations of the outer loop can be
seen as supersteps. The difference from Bellman-Ford is that in this
vertex-centric view, not all edges in the graph are processed in ev-
ery superstep — only edges associated with vertices in the wavefront
(i.e., vertices whose values were updated in the previous superstep)
are processed. Also the number of supersteps does not need to be
the number of vertices as is the case in the Bellman-Ford algorithm
— instead, the execution stops as soon as the wavefront becomes
empty during an entire superstep.

The wavefront based Bellman-Ford does not have a static mem-
ory access pattern across the supersteps, as the set of active vertices
is changing. The memory access pattern in such applications are
considered to be dynamic. This behavior has a significant conse-
quence to our ability to optimize the processing, as was done for
the static irregular applications in [3]. Reorganizing the data in ev-
ery superstep will be expensive and can outweigh the benefits from
SIMD execution.

2.1.3 Adaptive Dynamic Irregular

There is yet another set of irregular applications where the topol-
ogy of the graphs/grids can change over the execution. In Molecu-
lar Dynamics, for example, one needs to rebuild the neighbor edges
every few iterations — only two nodes that are within a certain cut-
off radius are considered neighbors and have interaction force be-
tween each other. As the simulation proceeds, the coordinates of
the molecules adjust, and the distances between two molecules can
change. Thus, new edges need to be added and old edges have to
be removed. However, one interesting point here is that the differ-
ence between two successively built neighbor edge lists is small.
Figure 3 shows the edges between 8192 nodes, as well as the edges
that are changed (either removed or newly added) after rebuilding.
The number of edges before rebuilding is 81,976, while the num-
ber of modified edges is 4,514, i.e, only 5% of the total number
of edges. The memory access pattern here can be considered as
adaptive dynamic.

2.2 Intel Xeon Phi Architecture

Intel Xeon Phi coprocessor is the latest commercial release of the
Intel Many Integrated Core (MIC) architecture, and it has been in-
corporated in 9 of the top 100 supercomputers at the time of writing
this paper [1]. The coprocessor is designed to be x86-compatible,
so that it can leverage existing x86 software, and thus, benefit from
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(a) Edges before Rebuilding  (b) Edges Changed in Rebuild-
ing

Figure 3: Adaptive variation of edges in Molecular Dynamics

traditional multi-core parallel programming models, libraries, and
tools. There are 60 or 61 x86 cores in the coprocessor, each of
which has a separate 32 KB L1 cache and a coherent 512 KB L2
cache, with L2 cache for all cores interconnected in a ring. Each
core supports as many as 4 hardware threads. Each core also has 32
512-bit vector registers, providing large-scale SIMD parallelism.
Because of the large number of cores and coherent cache, L2 cache
misses on Intel Xeon Phi coprocessor are expensive compared to
those on multi-core CPUs. A miss on L2 cache needs to be for-
warded on the ring, and if the requested address is found on another
core’s cache, the data need to be forwarded on the ring afterwards.
The cost in the worst case is of the order of hundreds of cycles.
Unlike the previous SSE that was supported on Intel CPUs, In-
tel Xeon Phi coprocessor has a new 512 bit SIMD instruction set
referred to as IMCI orIntel Initial Many Core Instructions. It has
a class of gather/scatter primitives for bulk operations that load/-
store data from unaligned and non-continuous memory addresses.
Another important feature in IMCI is the mask data type, which is
associated with a class of mask operations. These operations facil-
itate operating on certain specific elements within a SIMD vector.

2.3 Tiling and Grouping Approach

Chen et al. [3] have recently shown that tiling and grouping input
data is an effective approach for improving the SIMD performance
of irregular applications with gather and scatter operations. Their
work applies to graph algorithms, irregular reductions, and sparse
matrix computations.

Their approach include three steps. In first step, Sparse Matrix
View, a sparse matrix is used as a unifying structure — for exam-
ple, since a graph can be represented by a sparse matrix (edges in
the graph being represented as non-zeros in the sparse matrix), the
operations can be seen as operations on sparse matrices. Similarly,
for irregular reduction (like the ones arises with unstructured grids),
edges that the computation iterates over can be seen as non-zeros in
a sparse matrix. The computation associated with processing any
given edge usually involves reading and writing values associated
with the nodes that are the end-points of the edge.

The idea behind the second step is as follows. With the sparse



matrix view of the computation, dividing and storing tiles that have
a high concentration of non-zeroes, and processing the non-zeros
tile-by-tile, is an effective method for improving the memory local-
ity in these applications. In each tile, the memory accesses utilize
the gather/scatter operations provided by Intel IMCI. Since each
tile spans a small number of cache lines, the SIMD performance is
good.

The third step, Grouping, addresses another challenge, which is
that IMCI instruction set (unlike GPUs) does not support atomic
operations among the lanes in a vector. Thus, if the same address
is used in more than one lane at any given time, we have a write
conflict. In order to remove the write conflicts, Chen ez al. [3]
group the edges in a tile into conflict-free vectors. Groups with
less than 16 elements are padded and the padded values are masked
during the execution.

As an example, it is straightforward to vectorize the inner loop of
Bellman-Ford algorithm by unrolling 16 iterations and combining
the scalar operations into vector operations. After applying tiling
and grouping, the inner loop iterates over the edges in the graph
tile-by-tile, leading to better data locality. Because the edges are
reordered into conflict-free vectors within a tile, the scatter opera-
tion does not lead to any write conflicts.

3. MOTIVATION AND OVERVIEW

Consider the vertex-centric SSSP algorithm described in Sec-
tion 2.1.2. There are many difficulties in applying SIMD to this
algorithm, as compared to achieving SIMD parallelization for the

Bellman-Ford algorithm. The computation is expressed in the Compute

function, which is applied to each vertex, and this can limit our abil-
ity to apply any data reorganization. More specifically, optimiza-
tions based on reorganizing the edge list (such as those presented
by Chen et al. [3]) cannot be applied to this computation model.
Second, each vertex stores its neighbor list locally, and once the
distance is updated, it needs to send messages to all of its neigh-
bors. Since the neighbors can be stored far away from each other in
the vertex list, there can be poor memory locality. Finally, a static
data reorganization, applied before the execution, will fail because
the memory access patterns change in each superstep.

Now, let us consider a particle interaction application such as
Molecular Dynamics. The tiling-and-grouping approach proposed
earlier [3] does improve data locality and removes data conflicts for
SIMD execution during a static period of simulation. However, the
only way it can handle changes in the neighbor list during execution
is by running an inspector after every modification to the neighbor
list. Clearly, this will be extremely expensive.

We aim at facilitating SIMD execution for graph algorithms for
the vertex-centric computing model. This includes being able to
modify data layout, making tiling-and-grouping optimization [3]
applicable, and facilitating SIMD execution. Our goal also includes
making the tiling-and-grouping approach practical for adaptive par-
ticle interaction applications, by creating an incremental version of
our transformation approach.

4. UTILIZING SIMD IN A VERTEX-CENTRIC

GRAPH PROCESSING FRAMEWORK

In this section, we present a framework that maps vertex-centric
algorithms to SIMD execution as an example to show how dynamic
irregular applications can be SIMDized efficiently. We first intro-
duce the API of our framework, and then give details of the imple-
mentation.

4.1 Programming Interface

class SSSPVertex: public Vertex {
public:
void InitMsg () {
Aggregate () ;
SetMsgValue (INF) ;
}

void ProduceMsg(vfloat xedge, vfloat =xsource, vfloat =
message) {
mask m = xmessage > *xsource + xedge;
conditional_update (message, xsource + *edges, m);

}

void Compute (Messagelterator* msgs) {

Figure 4: Vertex-centric SSSP with our framework

Besides the API functions listed in Table 1, our framework pro-
vides two more functions for users to implement. InitMsg ini-
tializes the values of messages, while ProduceMsg calculates
the messages based on the values of the source vertices and/or the
edges. Our framework calls InitMsg before the first superstep
and invokes ProduceMsgqg at the end of each superstep — with
the latter, the idea is to delay the message production till the end
of a superstep, when all messages can be processed in an edge-
centric manner. This style of computation, which also requires
omitting message production in Compute and storing edges in
SendMessageTo, enables our framework to apply SIMD instruc-
tions and even the locality transformations.

Figure 4 shows an example of vertex-centric SSSP algorithm im-
plemented with our framework. In the example, InitMsg sets all
the messages’ value to INF, and ProduceMsg compares the mes-
sages sent in previous superstep with the sum of the source ver-
tices’ values and the corresponding edges’ weights. If the sum is
smaller than the initial message, which means there is a chance for
the values in the destination vertices to be relaxed, then the values
of the messages need to be updated. Compute is almost identical
to the function shown in Figure 2, except that the message produc-
tion is sliced out and only the target vertex identifier is passed to
SendMessageTo.

4.2 Implementation

Our implementation includes four steps as illustrated in Figure 5.
First, the edges in a graph are preprocessed by the tiling-and-grouping
method reviewed in Section 2.3. These edges are also then stored
in an index data structure. Next, to overcome the vertex-by-vertex
computing constraint, we convert the vertex-centric computation to
edge-centric form by saving the edges when messages when nor-
mally they would be sent, and delaying message production till the
end of each superstep. Then, we activate the edges saved in the
index data structure in the second step. Last, we apply SIMD to the
edge-centric computation based on the activated edges in the index
data structure. We explain each of four steps below.

4.2.1 Preprocessing

In the tiling-and-grouping method described in Section 2.3, the
edges in a graph are represented by non-zeros in a sparse matrix,
and the edges in each tile are grouped into conflict-free vectors.
These vectors are stored in two arrays, X coord and Y coord —
X coord stores the x-coordinates of edge groups in a tile, whereas
Y coord stores the y-coordinate. Every set of 16 consecutive ele-
ments in the two arrays represents a conflict-free group of edges in
atile.




Preprocessing:
tile and group the edges and
store them in the index structure

Converting Vertex-Centric
to Edge-Centric:

save the edges that send messages

.= s
- !
l Index Data ;

Structure

Activating Saved Edges

Applying SIMD to the
Converted Computation

Figure 5: The main steps in our vertex-centric graph processing
framework for reusing data reorganization and applying SIMD ex-
ecution

Index Data Structure 'We now present an index structure which
is the key data structure used in our framework. All the edges in a
tile are stored in an array Index as its relative positions in a tile.
The relative position of an edge at the row 7 and column c in a
tile is r X tilesize + c. The absolute coordinates of an edge in
a sparse matrix, which are the positions of it two endpoints in the
vertex list, are determined by the coordinates of the tile and the
relative position of that edge. Suppose the coordinates of a tile is
(p, q) and the relative position of an edge in the tile is w, then the
absolute coordinates of the edge is (p X tilesize +w /tilesize, g X
tilesize-+w%tilesize). X coord and Y coord in our data structure
store the row and column number (not the absolute coordinates) of
grouped edges. In addition to X coord, Y coord, and Index, there
is another array Pos — Pos][i] is the position of the edge Index|i]
in X coord and Y coord. Initially, all the edges in a tile are marked
as inactive by setting the values in X coord to be -1.

Figure 6(a) shows a 8 x 8 tile where the filled cells represent
the edges in the tile, and the numbers in the cells are their relative
positions. Figure 6(b) shows the index data structure to store the
tile. In Figure 6(b), the edges are grouped into vectors of length
4 (the actual vector length is 16 in our test platform, and here we
choose 4 for demonstration). The edge 34, for example, is stored at
the position 12 in X coord and Y coord. The value -1 at the end of
X coord happens to be a padding here, but it can also indicate that
an edge is not active.

4.2.2 Converting Vertex-Centric to Edge-Centric

The reason for the conversion is that edge-centric computation
does not have the vertex-by-vertex computing constraint as in vertex-
centric model, which makes it much easier to improve data locality
in SIMD execution.

There are two key requirements for a vertex-centric computation
to be converted to edge-centric fashion. First, the produced mes-
sages are sent to the adjacent vertices of a given vertex. For ex-
ample, in the vertex-centric SSSP algorithm, each vertex first reads
the messages received from others. From these messages, it se-

(a) Edges in a Tile

Index ‘0‘2‘9 ‘13‘19‘21‘23‘25‘26‘29‘34‘38‘40‘43‘52‘54‘56‘57‘63‘

Pos ‘0‘1‘2‘3‘4‘5‘6‘7‘8‘9‘12‘10‘11‘13‘14‘15‘16‘17‘18‘
Xcaordlo 01 1]2 2|2 3]3 34 5I4 56 6]7 7 7—1I
Ycorrdlo 21 5|3 5|7 1]2 5|6 0]2 3|4 elo 3 7—1I

(b) Index Data Structure

Figure 6: Example of a tile and its edges stored in index data struc-
ture

lects the one with the minimum value. If this value is less than its
own distance, it will update its own distance with this value. If its
own distance is updated, it needs to send the updated distance to
all its neighbors via out-going edges. Second, only one message
is sent through every edge in a superstep. For example, in SSSP,
the distance of a vertex is updated only once in a superstep, and
the updated message will also be sent through the adjacency list
only once. A broad class of vertex-centric algorithms meet the two
requirements, and thus, can be viewed as edge-centric.

In our framework, this conversion does not require any code
transformation; instead, it is conducted by simply recording the
edges when messages are sent. More specifically, it is achieved
by modifying SendMessageTo function to save the adjacency
edges in different tiles instead of producing and writing the mes-
sages. The saved edges are later activated in the index data struc-
ture by a Search-and-Activate procedure which will be describe in
next subsection.

4.2.3 Activating Saved Edges in Index Data Struc-
ture

By leveraging the mask operations supported in Intel IMCI, we
represent the active status of an edge by its value in Xcoord: a
value of -1 in X coord indicates that the corresponding edge is not
active. Non-negative values in X coord represent the x-coordinates
of the edges. After reading values from X coord, the program first
compares the values with zero to produce a mask. If the value is
greater than zero, the corresponding bit in the mask is set; other-
wise, the bit is unset. Only the edges whose values in X coord
are non-negative actually participate in the computation. Thus, ac-
tivating an edge simply requires updating the value of an edge in
Xcoord from -1 to its x-coordinate.

With the help of the index data structure described above, in or-
der to activate the edge e, we first perform a binary search in Index
to obtain the index 4 such that Index[i] == e. Then, we can get
e’s position in X coord from Pos[i]. We next change the value
in Xcoord[Pos[i]] from -1 to the x-coordinate of e. The algo-
rithm is named Search-and-Activate and is shown in Algorithm 1.



Algorithm 1: Search-and-Activate an edge

Input: e: the edge that need to be activated
Index: ordered array of edge indices
X coord: x-coordinates of edge groups
Y coord: y-coordinates of edge groups
Pos: positions of edges in edge groups
x: x-coordinate of the tile
y: y-coordinate of the tile
inz = binary_search(e, Index);
if inz >= 0 then
position = Poslinz];
// calculate the z — coordinate of e
coordinate = x * tilesize + e/tilesize;
X coord[position] = coordinate;

The complexity of this procedure is O(log(n)), where n is the size
of Index. To further accelerate the procedure, the binary search
can traverse Index for several edges simultaneously using SIMD
lanes. More specifically, vectors of left, right, and middle positions
are maintained and the process stops when all edges are found in
Index. The update of X coord is also in SIMD.
Now, the vertex-centric computation has been converted into edge-

centric fashion — our framework iterates over all of the active edges
and performs message producing by invoking ProduceMsg.

4.2.4 Applying SIMD to the converted Computation

We define three default SIMD vectors, _message, _source

. edge 4 and 39 are
newly added;

D edge 29 and 43 are
removed

(a) Adaptively Changed Edges in a Tile

these two edges
are added as a
new index

these two edges are
marked as inactive
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(b) Index Data Structure Collection

Figure 7: Example of a tile with adaptively changed edges stored
in index data structure collection

and _edge, in our framework to implement SIMD execution. _message

stores message values that need to be produced, _source stores
values for the source vertices, and _edge stores edge weights. The
operations on these three vectors are implemented as overloaded
functions with SIMD instructions. As shown in the vertex-centric
SSSP code in Figure 4, three parameters are passed to ProduceMsg
— edge, source and message, with which the programmers can ref-
erence the three default SIMD vectors. When iterating over the ac-
tive edges, the framework first loads coordinates of the edges from
Xcoord and Y coord. Next, based on the the values in X coord,
the framework produces a mask which indicates the active edges
as non-zero bits. Last, the framework invokes ProduceMsg to
do the actual message producing with SIMD where the framework
is responsible for loading and storing the values of _message,
_source and _edge, which are implemented by the gather/scat-
ter instructions on Intel MIC architecture.

4.3 Overheads vs. Benefits

Most of the overheads incurred in our approach are in the trans-
formation from vertex-centric to edge-centric computation. More
specifically, one source of overheads is that the framework needs
to save all the active edges. Compared with directly producing the
messages and sending to the destination, saving the active edges
does not involve reading or writing the values in the vertices, nei-
ther does it involve computing the values of the messages. Instead,
we just save the indices of edges in a temporary array. Another
form of overhead is due to the step of searching-and-activating the
stored edges.

On the other hand, the benefits of our approach come from data
locality and SIMD processing. The original vertex by vertex exe-
cution can be seen as processing the non-zeros in the sparse matrix
row by row, whereas our approach processes the non-zeros in the
sparse matrix tile by tile, leading to significant memory locality
improvement when accessing the values in vertices. 16 lanes vec-
tor processing is applied to the active edges globally with SIMD
utilization rates range from 0.18 to 0.88. It turns out that the bene-
fits outweigh the overheads, bringing substantial speedups in vertex

centric graph algorithms, as we will show in the evaluation.

S. SIMD EXECUTION FOR ADAPTIVE DY-
NAMIC APPLICATIONS

In a particle interaction application like Molecular Dynamics, the
neighbor lists need to be rebuilt in every few iterations. During the
iterations between two rebuilding steps, the interactions are static
and the tiling-and-grouping method proposed by Chen et al. [3] is
effective in improving SIMD performance. However, once a neigh-
bor list is rebuilt, this method would require the tiling procedure to
be invoked again, which can have a high overhead.

This section describes our approach for incrementally applying
the solution. The key observation is that the interactions among
the particles (or neighbor lists) change gradually over time. Every
time the neighbor list is rebuilt, only a small fraction of edges are
removed and a similar fraction is typically added. This property
provides the opportunity to perform tiling-and-grouping only once
and reusing the grouping information, somewhat similar to our ap-
proach in supporting the vertex-centric graph framework. The key
difference from the approach for the vertex-centric graph frame-
work arises because new edges can be added to the list of interac-
tions.

5.1 Index Data Structure Collection

Consider a specific neighbor list rebuilding step, where some
edges are removed from the interaction, and some are newly added.
The removed edges do not participate in computation in the follow-
ing iterations, which are indicated by -1 in the array X coord and
will be masked out in the SIMD operations. The newly added edges
are appended to Index. They also need to be grouped and stored in
Xcoord and Y coord arrays for SIMD execution in the following
iterations. In addition, their positions in the X coord array need to
be stored in the Pos array.

Since the edges in the array Index are ordered by their indices
for binary search, the newly added edges cannot be directly ap-



pended. We modify the index data structure presented in Sec-
tion 4.2.1 and create a index data structure collection. There are
multiple Index arrays, each of which stores ordered edges. The bi-
nary search is conducted to all of the Index arrays until the element
is found in one of them. Similarly, the Pos array is extended to a
collection of Pos arrays, each of which corresponds to an Index
array. The arrays X coord and Y coord remain unchanged and have
groups of new edges appended to the end of them.

5.2 Search and Update the Edges

Because the graph/grid structure is changing, newly added edges
are not pre-reorganized. Thus, they need to be incrementally added
to the index data structure. The task is accomplished by a Search-
and-Update procedure that includes three steps.

In the first step, the procedure executes a modified version of the
Algorithm 1, with the following changes: (1) the input of the new
algorithm is an index data structure collection, (2) it creates a new
Index for the new edges that will be added to the multiple index
data structure, (3) when an edge is found in a certain Index array,
it will be activated as normal as in Algorithm 1, and (4) if an edge
is not found in any existing Index arrays, the algorithm will add
it to the new Index. Step two is to group the newly added edges
— specifically, after all the new edges are added to the new Index
array, we use the grouping method proposed by Chen et al. [3] to
group these new edges into conflict-free groups. These conflict-free
groups are subsequently appended to X coord and Y coord arrays.
Finally, the newly added edges in Index and Pos arrays are sorted
to facilitate binary search, which will be required the next time the
edges are rebuilt.

Figure 7(a) shows an example of adaptively changed edges in a
tile — edge 4 and edge 39 are newly added to the tile, while edge 29
and edge 43 are removed from the tile. Figure 7(b) shows the index
data structure collection storing the tile. The coordinates of edge
29 and 43 in X coord are set to -1, indicating these two edges are
no longer active in the following execution. A new index is created
for edge 4 and 39, with their coordinates appended to X coord and
Y coord. Pos records the positions of the two newly added edges
in X coord and Y coord.

6. EVALUATION RESULTS

In this section, we evaluate the effectiveness and efficiency of
our method using five graph algorithms and two particle interaction
applications. For comparison, we used a version that incorporated
our techniques, as well as serial implementations and naive use of
SIMD (which for graph algorithms implied the use of SIMD in-
structions while processing all edges for a given vertex). The goals
of our experiments included evaluating: 1) the benefits of our in-
dexing and grouping method for graph algorithms — to this end,
we compare the performance of the optimized SIMD framework
against serial and naive SIMD executions, and 2) efficiency of in-
cremental indexing and grouping, for which we compare the over-
heads of this method with a naive method we call all regrouping,
and evaluated performance against serial and naive version.

Our experiments are conducted on an Intel Xeon Phi SE10P co-
processor, which contains 61 cores running at 1.1 GHz, each with
four hyperthreads. The GDDRS main memory is 8GB. We use Intel
ICC compiler 13.1.0, to compile all the codes, with -O3 optimiza-
tion enabled.

6.1 Application Used

Table 2 shows the applications and datasets used in our exper-
iments. For each application, datasets of different sizes are used.
Five popular vertex centric graph algorithms are used: Breadth

Dataset Diminutions NNZ

[ App |

higgs-twitter ~ 457K*457K 15M

BFS soc-Pokec 1.6M*1.6M 31M

amazon0312 401K*401K 3.2M

higgs-twitter ~ 457K*457K 15M

SSSp soc-Pokec 1.6M*1.6M 31IM

amazon0312 401K*401K 3.2M

Graph higgs-twitter ~ 457K*457K I5SM
Algorithms SSWP soc-Pokec 1.6M*1.6M 31M
amazon0312  401K*401K  3.2M

higgs-twitter ~ 457K*457K 1I5M

wcCcC soc-Pokec 1.6M*1.6M 31M

amazon0312 401K*401K 3.2M

small-dag 412K*412K 850K

TS medium-dag ~ 350K*350K  6.8M

large-dag IM*1IM 30M

Moldyn 16-3.0r 131K*131K 11IM

Molecular 32-3.0r 365K*365K 30M
Dynamics .. 16-3.0r 131K*131K 11M
MiniMD 32-3.0r 365K*365K  30M

Table 2: Applications and datasets used in the experiments

First Search (BF'S), Single Source Shortest Path (SSSP), Single Source
Widest Path (SSWP), Topological Sort (7S), and Weakly Connected
Component (WCC). We select these algorithms because their set of
active edges changes over supersteps, and thus they match the pat-
tern we are optimizing. Conversely, We exclude graph algorithms
such as PageRank that have static active edges.

Elaborating on these applications — SSSP has been discussed in
earlier sections, and not discussed here. BFS is a widely used graph
traversal algorithm, which proceeds as follows. Initially, the flags
in each vertex are set to unvisited except for the starting vertex,
which set to just_visited. In each superstep, if a vertex is unvisited
and receives a message from other vertices, it will change its flag to
Just_visited, send messages to all of its neighbors, and then set its
flag to visited. If a vertex is visited, despite the received message,
it will go inactive by calling VoteToHalt. SSWP is an algo-
rithm for finding paths between a source vertex to other vertices in
a weighted graph, maximizing the weight of the minimum-weight
edge in the paths. Initially, the values in all vertices are set to 0
except the source vertex, which is set to INF. This indicates that the
source vertex has an infinite width path to itself, but zero width path
to all other vertices. In each superstep, a vertex finds the message
with largest width and compares it with its own value. If the mes-
sage’s value is greater than its own value, it will update the value to
the message’s value. If its own values is greater than the weight of
edge directing to the neighbor, the edge weight will be sent, other-
wise, the vertex updated value will be sent. 7S is an algorithm for
getting a topological sort of vertices in a directed acyclic graph or
a DAG. Initially, every vertex sets its values to 0 and sends 1 to its
neighbors. In each superstep, a vertex adds all messages it receives
to its own value. If the sum is O, it means there is no edge pointing
to this vertex, and thus it can be removed from the graph. When
a vertex is removed, it sends -1 to all its neighbors, indicating that
its outgoing edges are deleted from the graph. The algorithm stops
when all vertices are removed from the graph. Finally, WCC finds
a maximal subgraph of a directed graph such that for every pair of
vertices there is a path from one to another. Initially, all vertices
set their value to its vertex_id, indicating that they belong to the
weakly connected component of themselves only. In each super-
step, a vertex picks the vertex with smallest index among those that
send message to it, then it sets its own value to this smallest index
(except for in the superstep 0) — this implies that they are merging
the vertex into the weakly connected component of the sending ver-
tex. Next, the vertex sends its own value to all its neighbors. If the



smallest index of the received messages are greater than the vertex
value, the vertex does not belong to any other component and goes
inactive by calling VoteToHalt. The graphs used for BFS, SSSP,
SSWP, and WCC are from the SNAP[13] graph datasets, while the
input for 7§ are direct acyclic graphs (DAGs) that are synthetically
generated with varying size and sparsity.

A typical particle-interaction or molecular dynamics application
involves irregular reductions. The goal is to simulate the interac-
tions and motion of molecules based on Newton’s law. In each
iteration, the coordinates of the molecules are first updated. Next
the forces among the molecules are computed according to their
distances. Finally, the velocities are computed based on the forces,
which are then used in the next iteration for updating the coordi-
nates. The force computing procedure is conducted on the inter-
action edges. The interaction edges are initialized from input, but
need to be constantly updated as the coordinates of the molecular
change over time. The edge list updates are done by a neighbor
rebuilding procedure that needs to be executed in every few itera-
tions. We use two versions of Molecular Dynamics: Moldyn (used
in many studies in this area) and MiniMD, which is a DOE mini-
app. The major difference between these two implementations is in
the neighbor rebuilding procedure. Moldyn computes the distances
between every pair of molecules in the grid, while MiniMD bins the
molecules and only computes the distances among molecules in a
bin and its stencil bins. The inputs are generated by the program
that was distributed with the original serial code of Moldyn.

6.2 Results from Graph Algorithms

The experiments are conducted with three versions. The serial
version (Serial) is based on an API similar as Pregel [14] and
does not attempt any SIMD parallelization. The straightforward
version (Naive-SIMD) utilizes SIMD to process the edges vertex-
by-vertex, using SIMD instructions for loading/storing and also for
message production. Finally, our tiling and indexing approach de-
scribed in Section 4.2.2 is referred to as Opt—SIMD, where the
edges are processed tile by tile with SIMD instructions. All of the
three versions use only a single thread running on a single core of
Intel Xeon Phi, so as to focus (only on) SIMD parallelization.

6.2.1 Overall Performance

Figure 8 shows the overall performance of the graph algorithms.
The execution time in Figure 8§ is the total running time of the
algorithms. It shows that Naive—SIMD runs barely faster than
Serial, and in several cases even slower. This is largely because
of poor memory locality, leading to slow execution of gather and
scatter instructions. For BFS, the speedup of Opt—SIMD version
over Serial version is 7.19 on amazon0312, and 4.26 and 4.72
on higgs-twitter and soc-Pokec, respectively. These two speedups,
which are results of SIMD processing (and improved data locality
due to tiling and grouping) show that the benefits of data reorga-
nization and SIMD parallelization outweigh the overheads of in-
dexing used for maintaining the set of active edges. The relative
speedup for BF'S are better on amazon0312, which also happens to
be sparser (and thus absolute performance of other versions is even
worse). For SSSP and SSWP, the speedups are similar to those in
BFS. For T8, the speedup of Opt-SIMD over Serial is 4.43 on
small-dag, and 5.30 and 5.26 on medium-dag and large-dag, re-
spectively. For WCC, the speedup of Opt—SIMD over Serial
is 3.04, 4.95, and 4.59 on on amazon0312, higgs-twitter, and soc-
Pokec, respectively.

6.2.2 SIMD Utilization

SIMD utilization is an important factor that influences the effi-

ciency of the vectorization. This factor is calculated by dividing the
number of active edges over the entire execution by the product of
SIMD width and the number of times vector operations are used .

simd_utilization = #active_edges/(#vector_ops x 16)

We report the SIMD utilization of the graph algorithms (Opt -SIMD
version) in Table 3, the SIMD utilization of BF'S range from 0.18 to
0.29, which means 3 to 5 lanes in the vector are utilized in compu-
tation. We find that the SIMD speedups are even a little bit greater
than the number of utilized lanes, which are attributed to better
memory access locality brought by tiling. SSSP and SSWP have a
similar result. The SIMD utilization in these three algorithms are
determined by the graph topology, the more active edges on the
traversal frontier, the higher SIMD utilization. 7S has SIMD uti-
lization range from 0.22 to 0.35 because only the adjacency edges
of the removed vertex need to be calculated in each superstep. WCC
has a higher SIMD utilization ranging from 0.70 to 0.88 because
most of the vertices are active in each superstep.

App | amazon0312 [ higgs-twitter | soc-Pokec

BFS 0.18 0.25 0.29
SSSP 0.18 0.25 0.28
SSWP 0.18 0.25 0.29
WCC 0.88 0.70 0.79

TS 0.35 0.25 0.22

Table 3: SIMD utilization of Opt-SIMD: BFS, SSSP, SSWP, WCC,
TS (three datasets each)

6.3 Results from Molecular Dynamics

In this section, we will show detailed results from the evaluation
of Moldyn and MiniMD.

6.3.1 Overheads of Neighbor Rebuilding

We compare three versions each of Moldyn and MiniMD. The
first version is the original serial code without any data reorganiza-
tion (Non-Group). The second and the third versions are vector-
ized code with tiled and grouped input. The difference is that the
second version (Regroup—All) regroups all of the edges when
the neighbor edges are rebuilt, while the third version (Inc-Group)
uses our incremental grouping and indexing method. All of the
three versions use only a single thread running on a single core of
Intel Xeon Phi, so as to focus (only on) SIMD parallelization.

Table 4 shows the neighbor rebuilding overheads of the three
versions. The numbers in the table are the overhead time measured
in seconds, which is defined as follows — for Non-Group, it is
just the time for neighbor list rebuilding; for Regroup-Al1l, it
includes the execution time of neighbor rebuilding and the time for
regrouping all the edges; and finally, for Inc-Group, it includes
neighbor rebuilding and incrementally grouping and indexing of
the new edges. As shown in Table 4, the overhead of Regroup-All
is much higher than that of Non-Group. For Moldyn, the over-
head costs of Regroup-All is 121.94x times higher than that
of Non-Group on 16-3.0r, and 47.02x times higher on 32-3.0r.
For MiniMD, the overheads for Regroup-Al1l are 538.66x times
higher than Non-Group on 16-3.0r, and 130.99x higher on 32-
3.0r. These results imply that regrouping all edges is likely im-
practical. On the other hand, the overhead costs of Inc-Group
are comparable to that of Non-Group. For Moldyn, the over-
head time of Inc-Group is 1.19x that of Non-Group on 16-
3.0r, and even smaller on 32-3.0r For MiniMD, the overhead costs
of Regroup—-2Al1l are 4.52x higher than that of Non-Group on
16-3.0r, and 2.31x on 32-3.0r. The results show that our indexing
method is efficient in reusing tiling and grouping.
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Figure 8: Performance of Serial code (Serial), Naive SIMD processing

(Opt-SIMD): BFS, SSSP, SSWP, WCC, TS with three datasets each

App [ Dataset | Non-Group  Regroup-All Inc-Group
Moldyn 16-3.0r 4.93 601.14 5.89
y 32-3.0r 20.21 950.23 8.43
.. 16-3.0r 1.21 651.78 5.47
MiniMD | 35 3 o 8.37 1096.35 20.20

Table 4: Overhead of neighbor rebuilding in original serial
code (Serial), neighbor rebuilding with regrouping all new edges
(Regroup-All), neighbor rebuilding with incremental grouping and
indexing (Inc-Group): Moldyn, MiniMD with two datasets each

6.3.2 Overall Performance

To demonstrate that our incremental grouping and indexing method
is beneficial in SIMD parallelization, we evaluate the total execu-
tion time of Moldyn and MiniMD with 100 iterations. Neighbor list
rebuilding takes place every 20 iterations. As shown in Figure 9,
we compare the execution time of two versions of each program.
The first version is original serial code (Serial). The second
version Inc—Group+SIMD computes the forces in SIMD manner
with tiled and grouped input, and uses incremental grouping and
indexing in neighbor rebuilding.

For Molydn, the speedups of Inc-Group+SIMD over Serial
are 4.43 and 3.44 on 16-3.0r and 32-33.0r, respectively. For Min-
iMD, the speedups of Inc-Group+SIMD over Serial are 4.35
and 2.54 on 16-3.0r and 32-33.0r, respectively. With tiling and
grouping method, the speedup of SIMD force computation over
serial code in each iteration is 5.53 on 16-3.0r, and 3.67 on 32-
3.0r, which is the same as what Chen et al. report in [3] for non-
adaptive or static irregular applications. Overall, we have shown
that our incremental grouping and indexing method imposes lit-
tle overheads and makes it feasible to accelerate applications using

(Naive-SIMD), and SIMD processing with our indexing and tiling

modern SIMD features.

- : Moldyn
B Serial

MiniMD
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Il Inc-Group+SIMD
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Figure 9: Overall performance of serial code (Serial) and SIMD
force computation with incremental grouping and indexing (Inc-
Group+SIMD): Molydyn, MiniMD with two datasets each

7. RELATED WORK

Vectorizing irregular applications is a challenging problem that
has received considerable interest in recent years. Many efforts fo-
cus on accelerating irregular applications on various parallel plat-
forms, including the GPUs and the Inte]l MIC. Among these, a sub-
set focuses on a specific application such as SpMV and Molecular
Dynamics, while others focus on vectorizing a category of applica-
tions (for example, graph algorithms).

Pennycook et al. [17] accelerate Molecular Dynamics on Intel
Xeon Phi. They compare the efficiency of different gather/scatter
implementations (software and hardware). The neighbor edges are
processed node by node in their work, leading to poor cache per-
formance, i.e., optimizing memory locality has not been a part of



their work. Thébault et al. [19] parallelize unstructured 3D mesh
computations at both multi-core and SIMD levels. The memory
performance is optimized by recursive bisection with METIS, and
the vectorization is done by a coloring scheme. The cost of these
two data reorganization steps is high. Thus, their work is only ap-
plicable for static irregular patterns, and not the dynamic irregular
applications we have targeted.

A number of research efforts have focused on optimizing graph
processing. Kyrola et al. [12] propose a graph storage format (shard)
to achieve efficient large graph processing on a PC with disk-based
computations — with the idea that improved data locality can re-
duce the number of disk operations. The main steps of their graph
storing process involve tiling the sparse matrix of the graph and
storing the edges tile-by-tile. However, they do not apply this idea
for SIMD processing. CuSha [11] modifies the shard format for
efficient vertex-centric graph processing on GPUs. GPUs support
atomic operations on shared memory, and thus there is not need
to remove conflicts among the threads. Also, once the graphs are
stored in shard format, there is no need to reorganizing the data
anymore. In comparison, we have targeted SIMD instruction sets
that do not support atomic operations among the lanes in a vector,
so conflict removal is necessary for correctness. Merrill et al. [16]
focus on parallelizing BFS on GPUs by fine-grain task manage-
ment. Hong et al. [9] propose a novel virtual warp centric pro-
gramming method to address the work imbalance problem in graph
algorithms for GPUs. Chen et al. [3] use tiling and grouping to
improve memory localities for SIMD gather/scatter operations and
to remove the write conflicts among lanes in a SIMD vector. Their
methods target irregular applications that have static memory ac-
cess patterns. As stated throughout the paper, our work builds on
their ideas but optimizes for dynamic or adaptive irregular patterns.

Data reorganization for locality improvement of irregular mem-
ory accesses has been studied for many years on CPUs. The most
recent work on GPUs is done by Wu er al. [20]. They find that
searching an optimal data reorganization (in terms of minimizing
non-coalesced data access on GPUs) for irregular memory accesses
is NP-complete. They propose two data reorganization methods
(padding and sharing), which are effective in reducing non-coalesced
data accesses. The sharing method utilizes a graph partitioning pro-
cedure to improve the data locality. In our work, we use tiling in-
stead of partitioning since tiling appears to be cheaper than graph
partitioning.

8. CONCLUSIONS

This paper has presented methods that facilitate reusing data
reorganization for efficient SIMD parallelization of dynamic and
adaptively dynamic irregular applications. We have proposed an
index data structure and a search-and-activate procedure to main-
tain the active edges for a given iteration or superstep of a graph
application. The active edges are also organized in tiles — thus our
method incurs low overheads and the applications can benefit from
improved data locality while utilizing SIMD features. The methods
are applied to a vertex-centric graph framework and particle-in-cell
applications. Experimental results show that our methods bring
substantial SIMD speedups. The speedups on graph applications
range from 3.04x to 7.19x, and those on particle-in-cell applica-
tions vary from 2.54x to 4.43x.
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