SampleMine: A Framework for Applying Random Sampling to Subgraph Pattern Mining through Loop Perforation

Peng Jiang
The University of Iowa
Iowa City, Iowa, USA
peng-jiang@uiowa.edu

Yihua Wei
The University of Iowa
Iowa City, Iowa, USA
yihua-wei@uiowa.edu

Jiya Su
Illinois Institute of Technology
Chicago, Illinois, USA
jsu18@hawk.iit.edu

Rujia Wang
Illinois Institute of Technology
Chicago, Illinois, USA
rwang67@iit.edu

Bo Wu
Colorado School of Mines
Golden, Colorado, USA
bwu@mines.edu

ABSTRACT
Subgraph Pattern Mining (SPM) is an important class of graph applications that aim to discover structural patterns in a graph. Due to the enormous exploration space, SPM is in general computationally challenging. To accelerate SPM, many random sampling techniques have been proposed. While the existing sampling techniques are effective for conventional SPM tasks such as motif counting and frequent subgraph mining, they cannot be easily adapted for new applications.

In this work, we propose SampleMine, a framework for applying random sampling to any non-listing SPM task. Our main idea is to express subgraph exploration as a nested loop and sample the subgraphs with loop perforation. We first propose a two-vertex exploration technique to accelerate the subgraph exploration procedure. Then, we provide two sampling strategies under the loop perforation framework and show that they can achieve good results for counting and frequent subgraph mining tasks. The experimental results show that our system achieves significant speedups against the state-of-the-art graph mining systems with little accuracy loss.

KEYWORDS
Graph algorithms; Approximation algorithms; Mathematics of computing

1 INTRODUCTION
Subgraph Pattern Mining (SPM) is widely used for retrieving information from graph-structured data in various application domains, including bioinformatics [34, 45], computer vision [16], and social network analysis [44]. An example SPM task is frequent subgraph mining, which is to discover subgraph patterns with supports larger than a threshold. Another example query could be ‘counting the subgraphs with at least one vertex of label x’.

Many algorithms and systems have been proposed for different SPM tasks such as motif counting [5, 7, 8, 22, 36, 39, 46, 48] and frequent subgraph mining [3, 6, 18, 20, 27, 37, 38]. These works usually include task-specific optimizations and cannot be easily adopted for new applications. In recent years, there is a growing interest in designing general-purpose SPM systems [17, 24, 31, 43, 47]. These systems aim to cover different SPM tasks with a general computation pattern and provide a flexible API to the users. However, due to the enormous exploration space, the existing systems have difficulty in mining large patterns on large graphs.

Random sampling is a commonly used technique to reduce the computational complexity of SPM tasks that do not require an exhaustive listing of subgraphs [3, 9, 11, 19, 37, 38]. Most of the existing sampling methods are task-specific. For instance, graph coloring has proven to be effective for unlabeled motif counting [9], while support estimation is more suitable for frequent subgraph mining [37]. How to enable efficient sampling for an arbitrary mining task is still an open problem. Previous SPM systems have adopted neighbor sampling [23, 32, 35], but they only work for counting tasks and have limited support for user-defined queries.

In this work, we aim to provide a general framework for applying random sampling to various SPM tasks. Our solution is based on the observation that the subgraph exploration procedure can be expressed as a nested loop and the sampling of subgraphs can be achieved by simply perforating the loops. For subgraph exploration, we propose a novel two-vertex approach. The idea is to extend a subgraph by joining it with its neighboring size-3 subgraphs on a common vertex in each exploration step. We prove that two-vertex exploration can discover all subgraphs of any size and show that it has smaller time complexity than the traditional single-vertex exploration.

For subgraph sampling, we provide two loop perforation strategies and show that they can achieve good estimation results for counting and frequent subgraph mining tasks. Compared with the
neighbor sampling technique in the existing SPM systems [23, 32],
our sampling strategy can quickly find the most important patterns
and return more accurate counts with the same amount of compu-
tation. For frequent subgraph mining, our sampling strategy can
discover most of the frequent patterns with only a small portion
of the execution time of accurate mining. Besides subgraph count-
ing and frequent subgraph mining, our sampling technique can be
easily applied to non-conventional, user-defined mining tasks. Our
system also provides a simple API for the users to define their own
sampling strategies.

In summary, we make the following contributions in this paper.

- We propose a two-vertex approach for subgraph exploration and
show its advantage over single-vertex exploration.
- We propose a loop-perforation-based sampling framework for
arbitrary SPM tasks.
- We provide two sampling strategies under the loop perfora-
tion framework and show that they can achieve good per-
formance and accuracy for various SPM tasks.

We perform extensive evaluation of our system and compare
with five state-of-the-art graph mining systems: AutoMine [31],
Peregrine [24], Pangolin [15], ASAP [23], and ScaleMine [3]. For
subgraph counting, our system achieves an average (geometric
mean) of 16.3x speedup against AutoMine, and 129.7x speedup
against Peregrine, with little accuracy loss. For frequent subgraph
mining, our system achieves an average of 34.7x speedup against
AutoMine, 8.3x speedup against Peregrine, 10.7x speedup against
Pangolin, and 18.7x speedup against ScaleMine, while returning
more than 80% of the frequent patterns. Our system can also return
good estimation results for tasks that the existing systems do not
support or cannot return in a reasonable amount of time.

2 BACKGROUND

This section gives some background on SPM and the existing
systems for SPM.

2.1 Graph Basics

A graph G is defined as G = (V, E, L) consisting of a set of vertices
V, a set of edges E and a labeling function L that assigns labels to
the vertices and edges. A graph G′ = (V′, E′, L′) is a subgraph of
graph G = (V, E, L) if V′ ⊆ V, E′ ⊆ E and L′(v) = L(v), ∀v ∈ V′. A
subgraph G′ = (V′, E′, L′) is vertex-induced if all the edges in
E that connect the vertices in V′ are included E′. A subgraph is
edge-induced if it is connected and is not vertex-induced.

Definition 1 (Isomorphism). Two graphs G1 = (V1, E1, L1) and
G2 = (V2, E2, L2) are isomorphic if there is a bijective function f : V1 → V2
such that (vi, vj) ∈ E1 if and only if (f(vi), f(vj)) ∈ E2.

We say two (sub)graphs have the same pattern if they are isomor-
phic. The pattern is a template for the isomorphic subgraphs, and
a subgraph is an instance (also called embedding) of its pattern. To
determine the pattern of a subgraph, a canonical form of the subgraph
can be computed. The subgraphs with the same canonical form are
isomorphic. There are various tools and algorithms available for
graph isomorphism check [25, 33, 49]. All of these algorithms have
exponential complexity. We use bliss [25] for isomorphism check in
our system as it is fast in practice and is widely used in the existing
systems [24, 43, 47]. Isomorphisms from a graph to itself are called
automorphisms.

2.2 Subgraph Pattern Mining Tasks

Our system supports conventional SPM tasks as well as user-defined
tasks. Some examples are:

- Subgraph Counting (SC). The task is to count the embeddings
of different subgraph patterns and find the patterns with the largest
counts.

- Frequent Subgraph Mining (FSM). The task is to obtain all
frequent subgraph patterns from a labeled input graph. A pattern is
considered frequent if it has a support above a threshold. Different
from the counts, the support of a pattern usually needs to have the
anti-monotone property, i.e., the support of a pattern can not be
larger than the support of its subpatterns. The most commonly
used support measure for FSM is the minimum image based (MNI)
support [10].

Definition 2 (MNI Support). Given a pattern P = (Vp, Ep, Lp)
and an input graph G = (V, E, L), if P has m embeddings {fp, f2, ..., fm}
in G, the minimum image based (MNI) support of P in G is defined as

\[\sigma_{MNI}(P, G) = \min_{v \in V_p} |\{fp(v) : i = 1, 2, ..., m\}|. \]

The set of nodes in V that are assigned to v ∈ Vp, i.e., \{fp(v) : i = 1,
2, ..., m\} is the domain of v on G, denoted as Dom(v, G). With
a support measure \(\sigma\), the frequent subgraph mining problem is
defined as finding all patterns \{Pi = (Vi, Ei, Li)\} in a graph G such
that |Vi| = s and \(\sigma(Pi, G) \geq t\) where s is the given pattern size and t
is the given support threshold. Depending on the applications, the
users may require listing the subgraphs of the frequent patterns.
We focus on finding the frequent patterns in this work. With the
frequent patterns, the frequent subgraphs can be easily obtained
with any graph pattern matching procedure.

- User-Defined Queries. In addition to the conventional SPM
tasks, we may be interested in finding subgraphs that meet certain
constraints. For example, one might be interested in ‘the number
of size-7 subgraphs that have at least two vertices with label x’.
Another query example is ‘finding all the frequent subgraphs that
have at least one vertex with label x or label y’.

2.3 Systems for Subgraph Pattern Mining

There are mainly two approaches to generic subgraph mining
taken by the existing systems. Some SPM systems are subgraph-
centric [15, 17, 43, 47]. They enumerate all the subgraphs and filter
out the unwanted subgraphs. The enumeration is performed in a
vertex-by-vertex manner. The subgraphs of size l are extended with
one vertex in each step to obtain subgraphs of size l+1. The other
systems take a pattern-based approach [3, 18, 24, 31]. The idea is
to enumerate the patterns, filter out the unwanted patterns, and
match the remaining patterns on input graph. The pattern-based
systems are efficient for small-pattern queries because there are
not many small patterns and they can exploit the well-optimized
pattern matching techniques. However, when the query pattern is
large, enumerating the patterns becomes expensive as the number
of patterns grows exponentially. To accelerate generic subgraph
mining, many task-independent optimizations have been proposed.
For example, Fractal [17] proposes a hierarchical work-stealing mechanism to achieve better load balance for parallel subgraph enumeration. AutoMine [31] searches the matching orders of vertices to achieve the most pruning of exploration space.

3 NESTED LOOP FOR SUBGRAPH EXPLORATION

Our system takes the subgraph-centric approach. The most important task of a subgraph-centric system is to enumerate all subgraphs of size n without knowing the exact patterns. All the existing SPM systems use single-vertex exploration for this task. We find that limiting the step size to one is not necessary. In this section, we propose a two-vertex exploration technique and show its advantage over single-vertex exploration.

3.1 Two-Vertex Exploration

Figure 1a shows the procedure of single-vertex exploration adopted by the existing SPM systems. The exploration starts from all edges in the graph. In each loop level, the subgraphs are extended by their neighboring edges. The extension continues until the desired size is reached. Single-vertex exploration ensures that all the size-n subgraphs can be discovered in the innermost loop.

Figure 1b illustrates the idea of our two-vertex exploration. We first obtain all the size-3 subgraphs in the input graph. Then, the exploration starts from the size-3 subgraphs. It extends a subgraph by joining it with its neighboring size-3 subgraphs in each loop level. We call it two-vertex exploration because the subgraph size is increased by two in each join step. We find that two-vertex exploration also ensures the exhaustive enumeration of subgraphs.

Theorem 1. For any $n > 3$, all of the size-n subgraphs can be discovered by joining the size-$(n-2)$ subgraphs with the size-3 subgraphs on a common vertex.

Proof. To prove Theorem 1, we only need to show that any size-n subgraph can be dissected into a connected size-$(n-2)$ subgraph and a connected size-3 subgraph on one vertex. Because the size-$(n-2)$ and size-3 subgraphs are joined in all possible ways, if a dissection exists for a size-n subgraph, it will be discovered by the join operation. Suppose any size-n subgraph can be dissected into a size-$(n-2)$ and a size-3 subgraph. There are only two ways a size-$(n+1)$ subgraph can be constructed from a size-n subgraph: 1) the new vertex is connected with the size-$(n-2)$ subgraph, and in this case, the size-$(n+1)$ subgraph can be dissected in the same way as the size-n subgraph (Figure 2a); 2) if the new vertex is only connected with the size-3 subgraph, we can always pick three connected vertices as the new dissection (Figure 2bc). As the base case, all the size-4 patterns can be dissected into a size-3 subgraph and an edge. The proof finishes by induction. □

Note that subgraph exploration is different from subgraph enumeration for a given pattern considered in previous works [28, 29]. These works propose to decompose the pattern and join the embeddings of the smaller subpatterns to find the embeddings of the original pattern. These pattern decomposition methods do not work for subgraph exploration because the patterns are unknown. In fact, for subgraph exploration, the step size cannot be larger than two. As an example, the graph in Figure 3 cannot be discovered by three-vertex exploration because it cannot be obtained by joining two connected size-4 subgraphs on a common vertex. For subgraph exploration, previous works have also proposed to merge smaller patterns to explore larger ones [26, 27]; however, their step size is one (e.g., FSG [26] joins two size-k subgraphs to obtain a size-$k+1$ subgraph).

Two-vertex exploration can be either vertex-induced or edges induced. For vertex-induced exploration, we add all the connecting edges between the two joining subgraphs to the resulting subgraph. For edge-induced exploration, we enumerate all possible combinations of the connecting edges between the joining subgraphs and generate a resulting subgraph for each combination.

Compared to single-vertex exploration, two-vertex exploration has smaller time complexity for the same subgraph mining task. Intuitively, because the combination of two edges is precomputed and stored in the size-3 subgraphs, two-vertex exploration needs fewer join operations to obtain subgraphs of a certain size. More rigorously, suppose the maximum degree of the input graph is d, the maximum number of size-3 subgraphs associated with a vertex is D, the number of vertices is N, and the subgraph size is n. The time complexity of the nested loop in Figure 1a is $O((1 \cdot 2 \cdot 3 \cdot \cdots (n − 1))(ND^{(n−1)}))$. The time complexity of the nested loop for two-vertex exploration in Figure 1b is $O((1 \cdot 3 \cdot 5 \cdots (n−2)−ND^{(n−1)/2})$ if n is odd and $O((1 \cdot 3 \cdot 5 \cdots (n−1))−ND^{(n−2)/2}d)$ if n is even. Because $D < d^2$ and $2i − 1 < i(i + 1)$, $\forall i \geq 1$, the time complexity of two-vertex exploration is smaller than that of single-vertex exploration.

3.2 Avoiding Redundant Subgraphs

The exploration procedure in Figure 1 can produce redundant subgraphs. As a simple example, a size-3 subgraph composed of two edges (a, b) and (b, c) can be discovered twice. It is discovered when e_1 is assigned to (a, b) and e_2 is assigned to (b, c). It is discovered again when e_1 is assigned to (b, c) and e_2 is assigned to (a, b). In many cases, we want to eliminate the redundant subgraphs. Previous systems have adopted a canonicity checking technique for redundancy removal [43]. This canonicity check, however, does not work for two-vertex exploration. We propose a smallest-vertex-first dissection method to achieve redundancy removal for two-vertex exploration.

Our method is based on the following observation: for any subgraph, there is only one way to divide it into two smaller subgraphs with both subgraphs being connected and one of them having the smallest spanning vertex indices. Thus, we can eliminate redundancy by finding this unique dissection of $\{s, t\}$ and checking if the dissected subgraphs are the same as s and t. The checking is performed each time we extend s with its neighboring size-3 subgraph t (i.e., in the is_valid function in Figure 1b). The procedure is shown in Algorithm 1. For a pair of subgraphs $\{s, t\}$, we first check if there are any other identical vertices except for the joining vertex. If yes, s and t cannot form a valid subgraph, and
Figure 1: Subgraph exploration implemented as a nested loop.

Figure 2: Two-vertex exploration can discover all subgraphs. Suppose all size-\(n \) subgraphs can be obtained by joining size-(\(n-2 \)) with size-3 subgraphs. For any size-(\(n+1 \)) subgraph, the new node is either connected to the size-(\(n-2 \)) part as in (a), or connected to the size-3 part in three different ways as in (b,c,d). Each case has a valid dissection into a size-(\(n-1 \)) and a size-3 subgraph. Thus, all size-(\(n+1 \)) subgraphs can be discovered by two-vertex exploration.

Algorithm 1: Automorphism check for two-vertex exploration.

```
Input : subgraph s; subgraph t; joining vertex k
Output : combined subgraph s'
func dissect(s');
  foreach v in s' in ascending order do
    I = the first three vertices visited by starting from v and spanning to the smallest vertex at each step;
    r' = the unvisited vertices in s';
    foreach v' in I in ascending order do
      r = r' \cup v';
      if r is connected then return I, r;
  if s and t have same vertices other than k then return false;
  // s' is a valid subgraph joined by s and t
  s' = s \cup t;
  // find the smallest dissection of s'
  I, r = dissect(s');
  // if the two joining subgraphs correspond to the smallest dissection, return s'
  if I == t and r == s then return true;
else return false;
```

A Running Example: Figure 4 shows a graph with all of its size-3 subgraphs (including wedges and triangles). Let us consider the size-5 subgraph ‘34257’. Without redundancy removal, the nested loop in Figure 1b will discover the subgraph multiple times (when \(t_1 = (3, 7, 2) \) and \(t_2 = (5, 4, 3) \), \(t_1 = (3, 4, 2) \) and \(t_2 = (3, 7, 5) \), and \(t_1 = (3, 5, 2) \) and \(t_2 = (3, 4, 7) \)). A straightforward way to avoid redundancy is to store all the subgraphs in a no-duplicate set. This method, however, is inefficient due to the large lookup overhead, especially when the loop is executed in parallel. With our smallest-vertex-first dissection method, we can eliminate redundancy without explicitly storing the subgraphs. In this example, the smallest vertex of subgraph ‘34257’ is 2, so the dissection procedure starts...
To further accelerate subgraph pattern mining, we apply random sampling for exploring subgraphs of the innermost loop in Figure 1. Suppose the loop has \(n \) elements for the sampling probability of the first edge to 1/3 and the probability of the second edge to 1. Let us consider the sampling of subgraphs of the two patterns in Figure 5a. For Pattern1, node-0 has three edges and one of them (edge \((0,1)\)) is sampled in the first loop. In the second loop, because the sampling probability is 1, both the neighbors of node-1 are sampled. This gives us two sampled subgraphs (‘014’ and ‘015’). For Pattern2, node-45,6 have six edges in the first loop and one third of them (edge \((4,2)\) and \((5,3)\)) are sampled in the first loop. In the second loop, \((2,6)\) is the neighboring edge of \((4,2)\), and \((3,6)\) is the neighboring edge of \((5,3)\). Both of them are sampled, and we obtain two sampled subgraphs (‘426’ and ‘536’).

We can see that the number of sampled subgraphs of a pattern is in expectation proportional to its subgraph count as shown in Figure 5b.

For any user-defined counting task, suppose there are \(m \) sampled subgraphs that meet the query constraints and the sampling probability of each subgraph is \(p \). We can obtain an unbiased estimation of the total number of inquired subgraphs as \(m/p \). For the example in Figure 5c, the estimated number of subgraphs of both Pattern1 and Pattern2 is \(2/(1/3) = 6 \), which is the same as the actual count. More generally, we denote all subgraphs that meet the query constraints as \(Q \), all subgraphs in the outcome space as \(O \), and the sampled subgraphs that meet the query constraints as \(S \). With any sampling method, the size of \(Q \) can be estimated

\[
\hat{c} = \frac{1}{\sum_{s \in S} p_s}
\]

where \(p_s = \Pr[s_1, s_2, \ldots, s_n] \) is the sampling probability of subgraph \(s \).

Theorem 2. Suppose \(c = |Q| \) is the number of subgraphs that meet the query constraints, and \(\hat{c} \) is an estimation of \(c \) from (1), we have

\[
\mathbb{E}[\hat{c}] = c.
\]

If we further assume that the subgraphs are sampled independently, then we have

\[
\text{Var}[\hat{c}] = \sum_{s \in Q} \frac{1 - p_s}{p_s}.
\]

The proof can be found in the supplementary material. When proportional sampling is used, i.e., \(p_s = p, \forall s \in O \), Theorem 2 leads to the following error bounds.

Corollary 2.1. If we define the estimation error as

\[
err = \frac{\hat{c} - c}{c},
\]

\[
\text{Var}[\hat{c}] \leq \frac{1}{p^2} |Q|.
\]
then we have

\[\mathbb{E}[\text{err}] \leq \frac{\sqrt{\text{Var}[c]}}{c} = \sqrt{\frac{(1 - p)}{p^c}}, \tag{5} \]

\[\Pr[\text{err} \geq \epsilon] \leq \exp\left(-\frac{\epsilon^2 c p}{3}\right) \tag{6} \]

for any \(0 < \epsilon < 1 \) and \(0 < p < 1 \).

Formula (5) is obtained by setting \(p_s = p \) in (3) and applying

\[\quad \text{the inequality } \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]]. \]

The formula suggests that 1) for a particular query, the larger sampling probability \(p \) we use, the smaller estimation error we achieve; 2) for queries with larger \(c \), we can apply more aggressive sampling (i.e., smaller \(p \)) to preserve the same estimation error.

Formula (6) is a direct application of Chernoff bound [21]. The formula indicates that the chance of the estimation error exceeding a threshold is exponentially small. While the loop perforation idea seems simple, we find that the error bound matches the bound of the state-of-the-art graph-coloring-based technique for motif counting (See Theorem 3 in [7]). This increases our confidence that loop perforation can be used as a general and efficient sampling technique for subgraph mining if appropriate perforation strategies are used.

In practice, because \(c \) is unknown, it is hard to configure \(p \) and achieve good estimation in one execution. We can use a small \(p \) to obtain a quick estimation and run the sampling procedure multiple times until the average of the estimated counts converges to certain accuracy.

4.2 Sampling for Finding Frequent Subgraphs

In some applications, we are interested in finding the most frequent subgraph patterns that meet certain constraints. The frequency is defined based on certain support measures. The support measures are different from the counts because they need to have the antimonomotone property (explained in §2.2). A pattern with a large count may have a small support if most of its embeddings overlap. For example, Pattern 1 in Figure 5 has six embeddings, but its MNI support is 1 because all the embeddings have the first vertex mapped to node-0 in the input graph. In contrast, Pattern 2 has the same number of embeddings, but its MNI support is 3. The proportional sampling method described above cannot find the frequent patterns efficiently. For such queries, we propose a budget sampling strategy. The basic idea is to set a limit on the number of sampled subgraphs associated with each vertex so that the number of overlapping samples is limited. Specifically, for single-vertex exploration, we group the edges of each vertex according to their patterns, and we sample a fixed number of edges from each group in each loop level. For two-vertex exploration, we group the neighboring size-3 subgraphs of each vertex according to their patterns and sample a fixed number of size-3 subgraphs from each group.

Figure 5d shows an example of budget sampling. For the two subgraph patterns in Figure 5a, we set the sampling budgets for both \(e_1 \) and \(e_2 \) to \(1 \). For Pattern 1, suppose edge (0, 1) is sampled in the first loop and edge (1, 4) is sampled in the second loop, we obtain one sampled subgraph ‘014’. For Pattern 2, one edge is sampled for each of node-4,5,6 in the first loop. Suppose the sampled edges are (4,1), (5,3) and (6,2). In the second loop, edge (1,5) is sampled as a neighbor of (4,1), edge (3,6) is sampled as a neighbor of (5,3), and edge (2,4) is sampled as a neighbor of (6,2). We obtain three subgraphs ‘415’, ‘536’ and ‘624’. Compared to proportional sampling, budget sampling returns more subgraphs of Pattern 2 which has larger MNI support.

4.3 Sampling for Large Graphs

When the input graph is large, there may be a large number of size-3 subgraphs which cannot be entirely stored in memory. In such cases, we can perform sampling when obtaining the size-3 subgraphs. For counting tasks, we use single-vertex exploration with proportional sampling to obtain the size-3 subgraphs. Suppose the sampling probability of each size-3 subgraph is \(q \). The estimation of the subgraph counts is similar to the procedure described in §4.1, only with the \(p \) replaced by \(p \cdot q^{(n-1)/2} \) if \(n \) is odd and replaced by \(p \cdot q^{(n-2)/2} \) if \(n \) is even. For FSM, we can sample a fixed number of size-3 subgraphs around each vertex in order to have subgraphs evenly distributed over all vertices. This can be done by...
incorporating sampling into a subgraph matching procedure. We adapted AutoMine [31] for this task.

4.4 Programming Interface

Our system provides a simple interface for defining different sampling strategies, as shown in Figure 6. The smp_prob function accepts as input the intermediate subgraph s, the joining size-3 subgraph (or edge) t, the joining vertex x, and the loop level l. It returns two values for each iteration in the lth loop level. The first value prob is the sampling probability of the current iteration, and the second value skip is the sampling outcome, indicating whether the current iteration should be skipped or not. The users can inherit the Sampler class and define their own smp_prob function. By default, the function returns prob = 1 and skip = false, meaning that no sampling is performed.

Figure 7 shows the implementation of budget sampling with our API. Before the exploration procedure, we aggregate the size-3 subgraphs (or edges if single-vertex exploration is used) according to their patterns and store a pattern index for each size-3 subgraph. We then group the neighboring size-3 subgraphs of each vertex according to their patterns and store the number of size-3 subgraphs in each group. For each vertex i, the number of its neighboring size-3 subgraphs of pattern j is stored in W[i][j]. The BudgetSampler computes the sampling probability of a joining size-3 subgraph t as B[t] / W[x][t.patt_id] where B[t] is the sampling budget in loop level l and t.patt_id is the pattern index of t. The sampling probability is compared with a random number between 0 and 1. If the random number is larger than the sampling probability, we skip the current iteration.

Due to space limit, we leave the implementation of proportional sampling in the supplementary material.

4.5 Putting It Together

We summarize the workflow of SampleMine in Figure 8. Given a data graph, a target pattern size, and query constraints, it starts by collecting the size-3 subgraphs. If the task is to count subgraphs, we use AutoMine to match the size-3 subgraphs. Both approaches return the same set of size-3 subgraphs if no sampling is used. For large graphs, we apply random sampling to the joining or matching procedure as described in §4.3. After obtaining all the size-3 subgraphs, we filter out the unwanted ones based on the query constraints. The constraints can be a support threshold for frequent subgraph mining tasks, or they can be any user-defined constraints. The filtered size-3 subgraphs are given to the two-vertex exploration procedure in Figure 1b to find subgraphs of target size. As discussed in this section, we can accelerate the exploration procedure by randomly sampling the loop iterations. Finally, the subgraph counts are estimated or the frequent patterns are returned for the query.

5 EXPERIMENTAL RESULTS

This section presents our experimental setup and performance comparison with the existing graph mining systems.

5.1 Experimental Setup

Platform: We run all the experiments on a workstation with an Intel Xeon W-3225 CPU containing 8 physical cores (16 logical cores) and 192GB memory. We use GCC 7.3.1 for compilation with optimization level O2 enabled.

Datasets: Table 1 lists the graphs used in our experiments. CI and MI are labeled; the other four are unlabeled. We randomly assign 20 labels to the vertices in OK graph and 30 labels to UK and FR.
Tasks: We evaluate our system with subgraph counting (SC), frequent subgraph mining (FSM), and user-defined queries. FSM and SC are two standard SPM tasks and have been described in §2.2. We consider labeled subgraphs for SC which is more challenging than unlabeled motif counting. We also test with five user-defined queries:

- Q1: count subgraphs with at least one vertex of label 1 and one vertex of label 2;
- Q2: count subgraphs with at least two vertices of label 1;
- Q3: count subgraphs that contain triangles with label 1;
- Q4: count subgraphs that do not contain squares with label 1;
- Q5: find subgraphs with label 1 or 2 and return the frequent patterns among them with MNI support greater than a threshold.

For most of the user-defined queries, we check the query constraints and filter out the unwanted subgraphs in the innermost loop. For example, Q1 computes the number of vertices with label 1 and 2 in the subgraph. If both numbers are 0, the subgraph is discarded. Q2 performs filtering in both the innermost loop and the second last loop. If the subgraph does not have label 1 in the second last loop, it cannot have at least two label 1’s, so we can filter it out early. Q5 checks the query constraints in the innermost loop before assigning the vertices to the domains, so the MNI support is calculated only with the subgraphs that meet the constraints. We consider vertex-induced subgraphs for SC, Q1, Q2, Q4, Q5, and edge-induced subgraphs for FSM and Q3.

Baselines: We compare our system with three state-of-the-art systems for general-purpose subgraph mining: Peregrine (PR) [24], AutoMine (AM) [31] and Pangolin (PG) [15], an approximate system specialized for subgraph counting: ASAP [23], and a sampling-based system specialized for frequent subgraph mining: ScaleMine (SA) [3]. Pangolin supports unlabeled vertex-based extension or labeled edge-based extension. It cannot enumerate labeled vertex-induced subgraphs for SC, so we only compare with Pangolin for FSM. The source code of ASAP is not available. We implement its neighbor sampling method into AutoMine. ASAP samples one subgraph at a time. When sampling the subgraph, it starts from a random edge in the graph and gradually extends the subgraph by randomly selecting a neighbor of the previous node. If the sampled subgraph belongs to a pattern, ASAP estimates the total number of embeddings of that pattern as the reciprocal of the sampling probability. ASAP runs this sampling procedure for a sufficient number of times and uses the average over executions as the final estimation. The main difference between this neighbor sampling method and our proportional sampling method is that neighbor sampling always samples one edge from a neighbor list. It cannot ensure a higher sampling probability for patterns with more embeddings. ASAP does not support MNI-based FSM. It has limited support for user-defined queries. The users can perform "all" or "atleast-one" predicate subgraph matching, but it does not support the more general queries used in our experiments.

Sampling Ratios: Table 2 lists the sampling ratios for counting tasks in our experiments. Here, \(sr_1 \) the sampling ratio of edges for obtaining size-3 subgraphs, \(sr_2 \) and \(sr_3 \) are the sampling ratios of edges and size-3 subgraphs for two-vertex exploration. The sampling ratios are determined by the following procedure. First, \(sr_1 \) is set to ensure that the size-3 subgraphs can be stored in memory. We use \(Nd^2 \) (\(N \) is the number of vertices, \(d \) is the maximum degree) as an upper bound of the number of size-3 subgraphs. Since we know all size-3 subgraph of MI can be stored in memory on our machine (i.e., \(sr_1 \) can be set to 1 on MI), we calculate \(sr_1 \) for larger graphs with \(N_{MI}d^2_{MI} = N_G(d_G/sr_1)^2 \) and round it to the closest power of 2. Next, we determine \(sr_3 \) based on an upper bound of the number of size-5 subgraphs (i.e., \(ND^3 \) where \(D \) is the maximum degree of size-3 subgraphs). Since we know \(sr_3 = 1/64 \) can obtain good results for MI, we calculate \(sr_3 \) for larger graphs with \(N_{MI}(d_{MI}/64)^2 = N_G(d_G/sr_3)^2 \). Finally, given \(sr_3 \), we use \(NdD^3 \) as an upper bound of the number of size-4 subgraphs and calculate \(sr_2 \) with \(N_{MI}(d_{MI}/8)(d_{MI}/64) = N_G(d_G/sr_2)(d_G/sr_3) \).

Parallelization: We use 16 threads for parallel execution for all systems. For our system, the outermost loop is parallelized with OpenMP using dynamic scheduling. For ASAP, since the sampling of subgraphs are independent, we use 16 threads to sample subgraphs at the same time.

5.2 Results for Subgraph Counting

Table 3 shows the execution time of SC with different systems. We list the results of tasks for which at least one of the systems can return accurate results in 24 hours. The execution time of two-vertex exploration includes both the time of the nested loop and the time for obtaining size-3 subgraphs. Without sampling, our system has almost the same execution time as AutoMine and is 5x to 50x faster than Peregrine. This is mainly because Peregrine needs to maintain all the labeled patterns and it is expensive when the number of patterns is large. To show the benefit of two-vertex exploration, we configure our system to run single-vertex exploration. Two-vertex exploration is 1.2x to 1.4x faster than single-vertex exploration. We
Figure 9: Histogram of estimation errors of SampleMine for the top-50 patterns with most embeddings.

Table 4: Number of patterns returned by SampleMine (SM) and ASAP with the same execution time. Tot# is the total number of patterns. SM/ASAP-tot is the number of patterns returned by SampleMine/ASAP. SM/ASAP-50 is the number of top-50 patterns returned by SampleMine/ASAP.

then apply proportional sampling to these tasks with the sampling ratios listed in Table 2. The sampling brings 2x to 37.9x speedup on CI and a 62.1x speedup on MI. The average (geometric mean) speedup of TV-smpl over AutoMine is 16.3, and the average speedup over Peregrine is 129.7.

Figure 9 shows the histogram of estimation errors for the top-50 patterns with most embeddings for the above tasks. We use the definition of estimation error in (4). The results show that, with the above sampling configuration, our system returns estimation of small errors for most patterns the estimation error is smaller than 0.06, and the average error over the 50 patterns is smaller than 0.05. Comparing 4-SC on CI and MI graph, we can see that the estimation error on MI graph is smaller than on CI graph even with a smaller sampling ratio. This is because MI has much more size-4 subgraphs than CI. The top-50 labeled size-4 patterns in MI have 1.57 × 10^7 to 2.36 × 10^8 embeddings, while the top-50 size-4 patterns in CI have only 434 to 1.47 × 10^8 embeddings. According to Corollary 2.1, the more subgraphs a query returns, the more aggressive sampling we can use to preserve the same accuracy.

We run ASAP for the same amount of time as our system and compare the estimation accuracy. Table 4 lists the number of patterns returned by SampleMine and ASAP. The total number of patterns returned by SampleMine (SM-tot) is 2.7x to 16.6x that of ASAP (ASAP-tot). For the top-50 patterns, our system returns all the 50 patterns (SM-50), while ASAP returns none for most tasks and returns 37 patterns for 5-SC on CI graph. For the 37 patterns that ASAP finds, the average error is 15.7, the maximum error is 430, the minimum error is 0.05, and the median error is 0.9. The results show that our system is more effective in finding significant patterns and obtains more accurate estimations than ASAP.

Table 5 shows the execution time of tasks on larger graphs for which we cannot obtain accurate results in 24 hours. We apply proportional sampling with ratios as listed in Table 2. Since the actual counts are unknown, we run the experiment for 10 times and calculate the empirical error by replacing c in (4) with the average count of the 10 runs. The maximum error of the 10 runs for the top-50 patterns is listed in the last column of Table 5. For all the testcases, the errors are smaller than 0.05. Again, we are able to apply aggressive sampling to these large graphs because they have a large number of subgraphs.

5.3 Results for Frequent Subgraph Mining

Table 6 lists the execution times of FSM for which at least one of the systems can return result within 24 hours. We find that Peregrine and Pangolin abort for most tasks. Peregrine paper [24] only reports results of 3-FSM. Pangolin [15] reports results mostly for 3-FSM. It reports 4-FSM for only one graph using large support thresholds, but it fails to give result for MI. For the only one testcase (4-FSM on CI) that Peregrine and Pangolin do return, our system (TV-acc) is 1.6x to 6.8x faster without any sampling. AutoMine is able to return results for these tasks. However, because it matches the patterns in a depth-first order, it cannot benefit from the anti-monotone
property (i.e., it does not run faster for larger support thresholds). Our system prunes the infrequent size-3 subgraph before the exploration procedure, and it runs 1.6x to 3.2x faster than AutoMine without sampling. Compared with ScaleMine (SA) [3] which uses node sampling for support estimation, our system (TV-acc) achieves almost the same performance without using any sampling.

We then configure our system to run budget sampling with budget 4⁵ and 4 for size-3 and size-2 subgraphs on CI, and budget 6² and 6 for size-3 and size-2 subgraphs on MI. The execution times are listed in column ‘SM’ in Table 6. Our system runs 4.1x to 310x faster than the compared systems while returning more than 80% of the frequent patterns for all these tasks. The average (geometric mean) speedup is 34.7 against AutoMine, 8.3 against Peregrine, 10.7 against Pangolin, and 18.7 against ScaleMine. Figure 10 shows the number of size-4 frequent patterns found by our system with different support thresholds and different sampling budgets. The speedups for non-sampling execution (TV-acc) are labeled in the figure. The errors are smaller than 0.1 for all tasks. When the sampling budget is set to 4, our system returns all the 9 size-4 subgraphs without using any sampling.

Table 7 lists the results of 5-FSM on UK graph with our system. Since the size-3 subgraphs cannot be entirely stored in memory, we perform sampling during the matching phase as described in §4.3. The matching procedure takes a large proportion of the total execution time. Once the size-3 subgraph is sampled, we can find size-5 frequent patterns in a relatively short time. None of the compared systems (including the sampling-based ScaleMine [3]) can return results for this task within 24 hours. This shows the main advantage of our system against previous sampling-based systems: while our system does not guarantee to find all the frequent patterns, it is able to return the most frequent patterns quickly, which are of most interest in real-world applications.

5.4 Results for User-Defined Queries

We first run Q1~Q5 on CI and MI graph where accurate results are available. Figure 11 shows speedups for Q1~Q4 with different sampling ratios. We can see that the queries run 3.8x to 7.3x faster for size-7 subgraphs on CI with \(sr = 1/2 \) and 14.5x to 49.2x faster with \(sr = 1/4 \). For size-4 subgraphs on MI, the queries run 2.6x to 26.9x faster with \(sr = 1/32 \) and 2.7x to 44.4x faster with \(sr = 1/64 \). The speedups for Q2 are smaller than for other queries because Q2 has a relatively small exploration space as the subgraphs without label 1 are pruned in the second last loop. The estimation errors are labeled in the figure. The errors are smaller than 0.1 for all tasks.
Table 8: Execution times of user-defined queries in hours with SampleMine.

<table>
<thead>
<tr>
<th>Task</th>
<th>Gr.</th>
<th>Time per exec</th>
<th>Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Q1</td>
<td>MI</td>
<td>4.4</td>
<td>0.02</td>
</tr>
<tr>
<td>5-Q2</td>
<td>MI</td>
<td>10.1</td>
<td>0.03</td>
</tr>
<tr>
<td>6-Q1</td>
<td>OK</td>
<td>10.1</td>
<td>0.05</td>
</tr>
<tr>
<td>6-Q2</td>
<td>OK</td>
<td>4.4</td>
<td>0.05</td>
</tr>
<tr>
<td>7-Q1</td>
<td>FR</td>
<td>7.5</td>
<td>0.04</td>
</tr>
<tr>
<td>7-Q2</td>
<td>FR</td>
<td>8.5</td>
<td>0.04</td>
</tr>
<tr>
<td>8-Q1</td>
<td>UK</td>
<td>2.5</td>
<td>0.05</td>
</tr>
<tr>
<td>8-Q2</td>
<td>FR</td>
<td>3.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Figure 12 shows the speedups for Q5 with different sampling budgets. As expected, the number of discovered patterns increases with the sampling budget. When the budget is set to 6, our system can obtain 98.7% of the frequent patterns with only 1/24 of the total execution for size-7 subgraphs on CI, and obtain 93.7% of the frequent patterns with only 1/91 of the total execution time for size-4 subgraphs on MI.

We then run Q1 and Q2 on larger graphs with the sampling ratios listed in Table 2. Table 8 shows the execution time of different tasks on different graphs. Because the accurate results are unknown, we run the experiments for 10 times and compute the empirical estimation error. For all the tasks, our system returns estimation of high accuracy. The same as for subgraph counting, we are able to apply aggressive sampling to these user-defined queries on large graphs because the subgraph counts are large. (The estimated counts are from 10^{12} to 10^{20}.) It is possible that for some user-defined queries with stricter constraints there are not many output subgraphs. For such queries, we cannot use a small p with proportional sampling. Formula (3) suggests that the estimation error can be reduced by assigning higher sampling probabilities to subgraphs in Q. For example, if the task is to count the number of subgraphs with label 1, a better sampling strategy might be assigning higher probabilities to the edges or size-3 subgraphs that contain label 1. We leave it for future work to investigate more sophisticated sampling strategies (e.g. adaptive sampling) under the loop-perforation framework.

6 RELATED WORK

There is a growing interest in supporting general-purpose subgraph pattern mining in recent year. Many systems and task-independent optimizations have been proposed.

Subgraph-Centric Systems: Arabesque [43] is a distributed system that enumerates all possible embeddings in multiple rounds and uses a filter-process model to generate the results. RStream [47] is the first single-machine, out-of-core graph mining system. It supports a rich programming model that exposes relational algebra for developers to express various mining tasks and a runtime engine that can efficiently compute the relational operations. Pangolin [15] also targets single-machine but provides GPU acceleration. DistGraph [42] and G-miner [12] are distributed graph mining systems that adopt breadth-first exploration. DistGraph focuses on reducing the communication of distributed computing when each node can only have a portion of the graph. G-miner proposes a block-based graph partitioning technique and uses work stealing to achieve good load balance. These systems use breadth-first exploration and need to store all intermediate results. The large memory consumption prevents them from efficiently mining for large graphs. Fractal [17] addresses the memory consumption issue by implementing depth-first exploration. All of the existing subgraph-centric systems are based on single-vertex exploration. Our system is the first to use two-vertex subgraph exploration.

Pattern-Based Systems: AutoMine [31] is a single-machine graph mining system that features compiler-based optimizations. Their main idea is to enumerate all unlabeled patterns of a particular size and match them one-by-one on a graph. Because the patterns are given, AutoMine is able to search an optimal matching strategy and combine matching procedures of multiple patterns. Peregrine [24] is another pattern-based system. Instead of enumerating all patterns before matching, it discovers patterns based on the subgraphs it has explored and maintains a list of the patterns. DwavesGraph [13] is another pattern-based system. Instead of enumerating all patterns before matching, it discovers patterns based on the subgraphs it has explored and maintains a list of the patterns.

Approximate Subgraph Pattern Mining: Random sampling has been widely used to reduce the computational complexity of SPM [3, 9, 11, 19, 37, 38]. Motivo uses graph coloring and adaptive sampling to accelerate motif counting [9]. ScaleMine proposes a sampling technique to accelerate FSM by estimating the MNI support of a pattern without enumerating all of its embeddings [3]. Sampling has also been used for accelerating FSM in a database of graphs [4, 40]. The main idea of these works is to perform random walk in the space of all patterns. By carefully setting the sampling probability at each step, they ensure that patterns of higher supports are more likely to be sampled [4]. These sampling techniques are task-specific and cannot be easily adopted for new applications. Sampling has been adopted in pattern-based graph mining systems [23, 32]. The idea is to sample edges in the graph based on the given patterns and estimate the actual results with the sampled results. These systems are good at counting subgraphs of a given pattern. However, as we show in the experiments, when the pattern is unknown, such neighbor sampling technique is not effective in finding the patterns with the most embeddings.

7 CONCLUSION

In this work, we propose a framework for applying random sampling to general-purpose subgraph pattern mining. Our system is designed with two novel techniques: two-vertex subgraph exploration and loop-perforation-based subgraph sampling. We show that two-vertex exploration accelerates subgraph exploration procedure by extending the subgraph by two vertices in each step. We also show that our loop-perforation-based sampling technique is flexible and can be used for designing efficient sampling strategies for different SPM tasks. The experiments show that our system significantly outperforms other state-of-the-art subgraph pattern mining systems for different tasks on various input graphs.

ACKNOWLEDGEMENTS

This work was supported by NSF award CCF-2028825.