
STMatch: Accelerating Graph Pattern Matching on
GPU with Stack-Based Loop Optimizations

Yihua Wei
University of Iowa

Iowa City, USA
yihua-wei@uiowa.edu

Peng Jiang
University of Iowa

Iowa City, USA
peng-jiang@uiowa.edu

Abstract—Graph pattern matching is a fundamental task
in many graph analytics and graph mining applications. As
an NP-hard problem, it is often a performance bottleneck in
these applications. Previous work has proposed to use GPU to
accelerate the computation. However, we find that the existing
GPU solutions fail to show a performance advantage over the
state-of-the-art CPU implementation due to their subgraph-
centric design. This work proposes a novel stack-based graph
pattern matching system on GPU that avoids the synchronization
and memory consumption issues of the previous subgraph-centric
systems. We also propose a two-level work-stealing and a loop-
unrolling technique to improve the inter-warp and intra-warp
GPU resource utilization of our system. The experiments show
that our system significantly advances the state-of-the-art for
graph pattern matching on GPU.

Index Terms—Parallel programming, Backtracking

I. INTRODUCTION

Graph pattern matching is widely used for retrieving in-
formation from graph-structured data in many application
domains, including bioinformatics [19], social network analy-
sis [26], and cybersecurity [20]. The problem stems from the
well-known subgraph isomorphism problem, which aims to
find all subgraphs that are isomorphic to a given query pattern,
and it is the fundamental task for many related problems, such
as motif counting and clique listing [17].

Due to its importance in real applications, graph pattern
matching has been extensively studied in the past decades.
Numerous algorithms and implementations have been pro-
posed [3], [5], [8], [9], [13], [18], [22], [27], [33]. However,
as the problem is NP-hard [10], it is still a performance
bottleneck in many applications, and it is always desirable
to scale the computation to large graphs. Therefore, there is a
growing interest in exploiting the massive parallelism on GPU
to accelerate the computation [25], [28], [30], [32].

Despite their different optimizations, the existing GPU
graph pattern matching systems all take a subgraph-centric
approach. They maintain a list of valid partial subgraphs and
extend them by one vertex/edge in each step until the desired
pattern size is reached. To extend a partial subgraph, they
either add a new edge to it by performing a binary join
operation [25], [28], or they find a match for the next pattern
node by performing set operations on the neighbor lists of the
previous nodes [30], [32]. A common feature of these systems
is that they need to store the partially matched subgraphs

explicitly. For example, GSI [32] stores the partial subgraphs
in a table, and it assigns each partial subgraph to a warp on
GPU for extension. A more recent work, cuTS [30], reduces
the memory consumption by using a trie-based data structure
to store the partial subgraphs. It also improves GPU thread
utilization by assigning each partial subgraph to a virtual warp.

The subgraph-centric implementation facilitates paralleliza-
tion; however, it has several inherent issues for GPU execution.
First, it requires synchronization at the end of each extension
step. The current systems maintain a list of partial subgraphs
and launch a GPU kernel to process them at every step.
The kernel launch and the synchronization incur an overhead.
Second, the partial subgraphs take a lot of memory space.
Although a hybrid DFS and BFS extension order can alle-
viate the issue [30], it requires much more kernel launches
and synchronizations. Third, the subgraph-centric implemen-
tation loses the implicit hierarchy of partial subgraphs and
thus disables some optimizations that can be applied to the
backtracking procedure (e.g., loop-invariant code motion and
pattern merging [16]). As a result, the state-of-the-art GPU
graph pattern matching system (cuTS [30]) can be even slower
than a highly optimized CPU implementation (Dryadic [16])
in many cases (See Table II).

To overcome the limitations of the subgraph-centric sys-
tems, we study the parallelization of backtracking on GPU
in this work. We first show that the subgraph-centric ap-
proach taken by the existing systems corresponds to the inner-
loop parallelization of the backtracking algorithm. Unlike the
previous systems, we choose to parallelize the backtracking
procedure from the outermost loop. This eliminates the syn-
chronization on GPU and enables our system to finish the
computation with one kernel launch. The main issue with this
outer-loop parallelization is that it suffers from severe load
imbalance. We address the issue by adopting a stack-based
implementation of the backtracking algorithm and proposing
a two-level work-stealing technique. We also observe that
the intra-warp thread utilization is low when the data graph
is sparse. This is because most nodes in these graphs have
only a few neighbors and the set operations cannot occupy
all the threads in a warp. To improve the thread utilization,
we propose a loop-unrolling technique that combines the set
operations for multiple sets and assigns them to a single warp.
Finally, as pointed out in [16], the backtracking procedure

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE



involves a lot of redundant set operations, which can be
eliminated by loop-invariant code motion. We adapt the code
motion technique in [16] and show that our system can be
easily and efficiently extended with this optimization.

In summary, we make the following contributions:
1) We propose the first stack-based graph pattern matching

system on GPU, which avoids the synchronization and
the memory consumption issue of previous subgraph-
centric systems.

2) We propose a two-level work-stealing and a loop un-
rolling technique to improve the inter-warp and intra-
warp GPU resource utilization for our system.

3) We implement a code-motion technique to reduce re-
dundant computation in our system and showcase that
our system is compatible with the existing optimizations
for backtracking-based graph pattern matching.

We perform an extensive evaluation of our system using var-
ious query patterns and input graphs, and compare with three
state-of-the-art graph pattern matching systems: cuTS [30],
GSI [32] and Dryadic [16]. The experiments show that our
system achieves 24x to 3385x speedups against cuTS and
GSI on an Nvidia GeForce RTX 3090 GPU and up to 898x
speedups against Dryadic.

II. PRELIMINARIES

This section gives a formal definition of the graph pattern
matching problem and describes the backtracking algorithm
for solving the problem. We also provide a brief background
on GPU architecture to facilitate our discussion.

A. Problem Definition

A graph G is defined as G = (V,E,L) consisting of a
set of vertices V , a set of edges E and a labeling function L
that assigns labels to the vertices and edges. A graph G′ =
(V ′, E′, L′) is a subgraph of graph G = (V,E,L) if V ′ ⊆ V ,
E′ ⊆ E and L′(v) = L(v),∀v ∈ V ′. A subgraph G′ =
(V ′, E′, L′) is vertex-induced if all the edges in E that connect
the vertices in V ′ are included E′. A subgraph is edge-induced
if it is connected and is not vertex-induced.

Definition 1 (Isomorphism): Two graphs Ga = (Va, Ea, La)
and Gb = (Vb, Eb, Lb) are isomorphic if there is a bijective
function f : Va ⇒ Vb such that (vi, vj) ∈ Ea if and only if
(f(vi), f(vj)) ∈ Eb.

The graph pattern matching problem is defined as finding all
the subgraphs in G that are isomorphic to a given query graph
Q. The subgraphs to be found can be either vertex-induced or
edge-induced. If the subgraphs are edge-induced, the problem
is equivalent to the subgraph isomorphism problem [27].

B. Backtracking for Graph Pattern Matching

Algorithm 1 shows the backtracking algorithm that is com-
monly used for graph pattern matching. The algorithm first
generates a matching order π for the nodes in the query
graph (line 1). The matching order ensures that the node
to be matched in the next step (i.e., π[l + 1]) is connected
to at least one of the nodes matched in previous steps (i.e.,

Algorithm 1: Backtracking for graph pattern matching
Input: a data graph G and a query graph Q
Output: all subgraphs in G that are isomorphic to Q

1 π ← generate a matching order;
2 Enumerate(G,Q, π, {}, 0);
3 Procedure Enumerate(G,Q, π,m, l):
4 if l = Q.size then Output m, return;
5 u← π[l];
6 Cm(u)← getCandidates(G, Q, π, m, l);
7 foreach v ∈ Cm(u) do
8 Add v to m;
9 Enumerate(G, Q, π, m, l + 1);

10 Remove v from m;

     // u₀ can be mapped to any node in data graph 

 1:  C₀ = V; 

 2:  for (i₀ = 0; i₀ < C₀.size; i₀++) { 

 3:    v₀ = C₀[i₀]; 

       // u₁ is a neighbor of u₀ 

 4:    C₁ = N(v₀); 

 5:    for (i₁ = 0; i₁ < C₁.size; i₁++) { 

 6:      v₁ = C₁[i₁]; 

         // u₂ is a neighbor of u₀ but not a neighbor of u₁ 

 7:      C₂ = N(v₀) - N(v₁); 

 8:      for (i₂ = 0; i₂ < C₂.size; i₂++) { 

 9:        v₂ = C₂[i₂]; 

           // u₃ is a neighbor of u₀, u₁ and u₂ 

10:        C₃ = N(v₀) ⋂ N(v₁) ⋂ N(v₂); 

11:        for (i₃ = 0; i₃ < C₃.size; i₃++) {  

12:          v₃ = C₃[i₃]; 

13:          Output({ v₀, v₁, v₂, v₃; } } } } 
 

Fig. 1: Graph pattern matching implemented as a nested loop.
N(v) means the neighbors of node v in the data graph.

π[0], . . . , π[l]). Prior work has shown that a carefully selected
matching order can effectively prune the exploration space
and reduce the computation [5], [18], [22], [33]. After ob-
taining the matching order, the algorithm invokes a recursive
procedure to enumerate the subgraph isomorphisms (line 2).
Starting from an empty subgraph, the Enumerate procedure
gradually grows the subgraph until it reaches the size of the
query graph (line 4). At each step l, it computes a set of
nodes in G that match the lth node of the query graph (line
6). Then, for each node v in the candidate set, it adds the
node to the partially matched subgraph m (line 8) and call the
Enumerate procedure to match the next node in the pattern
(line 9). Once it returns from the recursive call, which means
all the subgraphs extended from m have been explored, the
procedure removes v from m and backtracks (line 10).

u0 u1

u2 u3

Fig. 2: A query
graph.

Although the above backtracking algo-
rithm can be directly translated into a re-
cursive function, many graph pattern match-
ing/mining systems implement it as a nested
loop because it is more convenient for par-
allelization and optimization [1], [6], [16],
[17], [23], [24]. As an example, Fig. 1 shows the nested loop
for matching the query of Fig. 2. The candidate nodes for



the first loop are the nodes in the data graph that can be
mapped to u0. The first loop iterates over all these nodes
and tries to extend each node with its neighbors (line 4). The
second loop iterates over the candidate nodes for u1 and tries
to further extend the subgraph. Because u2 is a neighbor of
u0 but not a neighbor of u1 in the query graph, the candidate
nodes for u2 must be in the neighbor list of v0 but not in the
neighbor list of v1. Thus, we compute the candidate nodes for
u2 as N(v0)−N(v1). Similarly, the third loop computes the
candidate nodes for u3 as N(v0) ∩ N(v1) ∩ N(v2) since u3

is neighboring to u0, u1 and u2.

C. GPU Architecture

There are two types of parallelism on GPU: SIMT (Single
Instruction Multiple Threads) and MIMD (Multiple Instruction
Multiple Data). The GPU threads are organized into warps,
and the threads within a warp execute the same instruction
simultaneously. For branch statements, if different threads in
a warp need to execute different branches, they have to execute
one by one. The situation is called thread divergence, and it
hurts the performance because only a portion of the threads
in a warp can be active at a time. The warp is the smallest
scheduling unit on GPU. Different warps can execute different
instructions on different data. The warps are further organized
into threadblocks (also called cooperative thread arrays) and
are launched together onto the streaming multiprocessors.

A GPU typically has tens of streaming multiprocessors.
Each streaming multiprocessor has a number of registers and
a programmable cache called shared memory. Although it is
possible to declare more register variables than the physical
registers in a CUDA program, the variables will be spilled
to constant memory, which may significantly slow down the
program. All the threads in a threadblock can access the shared
memory. The shared memory is much faster than the GPU
global memory but also much smaller. The typical size of
shared memory on a streaming multiprocessor is tens of KB.
When a threadblock uses more shared memory than what is
available on a streaming multiprocessor, it cannot be launched.
A modern GPU can run more than 1K threads simultaneously
on a streaming processing, but the shared memory usually puts
a limit on the number of threads that can be active.

III. CHALLENGES FOR PARALLELIZING BACKTRACKING

We now consider the parallelization of the nested loop in
Fig. 1 for GPU execution.
Challenge 1: Load imbalance among warps. As real-
world graphs are irregular, the workload associated with each
node in the matching procedure varies significantly. If we
parallelize the loop at the outermost level, the program will
suffer from severe load imbalance. Previous CPU systems have
proposed to combine the first two loop levels and distribute
the computation based on edges [16], [17]. While they work
well for queries of up to four nodes, we find the load balance
degrades dramatically for queries of more than five nodes.
Previous work has also adopted work-stealing to balance the
workload in distributed systems [2], [16], [23]. However, their

work-stealing strategy cannot be directly applied to GPU due
to the memory hierarchy and the lack of signaling mechanism
on GPU. Another solution is to parallelize the inner loops. The
subgraph-centric approach taken by the existing GPU graph
pattern matching systems actually falls into this category. They
materialize the intermediate results of each loop level (i.e.,
the partial subgraphs) and distribute the partial subgraphs
to different warps. The downside of this approach is that it
requires a synchronization at the end of each extension step
and the materialization of intermediate results consumes a lot
of memory.
Challenge 2: Thread underutilization within a warp. Since
the threads within a warp execute in a SIMD manner, it is
natural to assign each subgraph to a warp and use 32 threads
to perform the set operation (at line 7 and 10 in Fig. 1). The
problem is that, because the number of elements in each set is
upper bounded by the degree of nodes in the data graph, the
sets usually have less than 32 nodes. As shown in Table I, the
median degrees of most real-world graphs are much smaller
than 32. This leads to idle threads during execution. While the
problem can be easily solved by assigning multiple subgraphs
to a warp in a subgraph-centric system [30], it is nontrivial
if we want to parallel the loop from the outermost level and
avoid the explicit storage of partial subgraphs.
Challenge 3: Redundant computation. As pointed out
in [16], the nested loop conducts a lot of redundant set
operations in its original form. For example, the result of
N(v0)∩N(v1) at line 10 of Fig. 1 is the same for all iterations
of the loop at line 8 because the computation is independent
of i2. We can lift this set operation outside the loop at line 8 to
eliminate the redundant computation. While this code motion
technique is easy to implement on CPU, it require a more
careful design of data structures for storing the code motion
information on GPU. In particular, the code-motion technique
in [16] needs to store multiple intermediate sets for different
labels in each loop level. If naively applied to our system, it
may cause shared memory overflow for large labeled queries.

IV. OVERVIEW OF STMATCH

Our system is built around a stack-based implementation of
Algorithm 1. The idea is to simulate the recursive procedure
by explicitly maintaining a function call stack. As shown in
Fig. 3, the call stack is composed of three arrays C, Csize
and iter, which store the candidate nodes, the number of
candidate nodes, and the loop iterate for each recursion level.
A variable l is used to indicate the current recursion level
and is initialized to 0. Every time the execution enters the
next level, we getCandidates based on the data graph G,
the query graph Q, and the current level l (line 8 in Fig. 3
corresponding to line 6 in Algorithm 1). Then, we iterate over
the candidates, match each candidate node to the query node,
and go to the next level (line 11 in Fig. 3 corresponding to
line 9 in Algorithm 1). The matching subgraphs are output
at the last level (line 16 in Fig. 3 corresponds to line 4 in
Algorithm 1). If all candidate nodes at level l have been
processed, we backtrack to the previous level (line 14 in Fig. 3



     // C[i] stores candidate nodes in loop level i 

 1:  C = array(PAT_SIZE, MAX_DEGREE);  

     // Csize[i] is number of nodes in C[i] 

 2:  Csize = array(PAT_SIZE); 

     // iter[i] is loop iterate in level i 

 3:  iter = array(PAT_SIZE);  

 4:  l = 0;   // start from loop level 0 

 5:  while (true) { 

 6:    if (l < Q.size) { 

         // if this subgraph has not been extended 

 7:      if (Csize[l] == 0) { 

           // extend it 

 8:        getCandidates(G, Q, l, C, Csize); 

           // algorithm stops if no subgraph can be extended 

 9:        if (l == 0 && Csize[l] == 0) break; 

10:        iter[l] = 0; } 

         // if there are unexplored nodes 

11:      if (iter[l] < Csize[l]) { l++; } // go to next level 

12:      else { // if all candidates are explored 

           // empty the candidate set 

13:        Csize[l] = 0;  

           // and backtrack to previous level 

14:        if (l > 0) { l--; iter[l]++; } } 

15:    } else { // output subgraph at last level 

16:      Output(C, iter); l--; } } 

Fig. 3: Graph pattern matching implemented as a stack-based
while loop.

Csize C iter

Warp j

l2

Csize

0 1

C

1

iter

Warp i

l

0 1 2 3 4

1   2 0   2   3   4 0   4 1   4 1   2   3

𝑽

𝑬

0

1 2

3 4

if (l > 0) {
get 𝑁 𝑣!"# ; 
if (l > 1) { 

perform set operations;}} 

if (l == 0) {
get a chunk of
nodes from 𝑉;  } 

Fig. 4: An example of getCandidates in two different warps.

corresponding to return from Enumerate function at line 9 in
Algorithm 1). The algorithm stops when all candidate nodes
at level zero have been processed (line 9 in Fig. 3).

For GPU execution, we run the while-loop of Fig. 3
independently on different warps. A call stack is allocated for
each warp. Since Csize, iter and l are small, we allocate them
in shared memory. C is allocated in global memory. Different
warps execute the same piece of code, but they obtain different
nodes when l = 0 with the getCandidates function. Fig. 4
illustrates the procedure of getCandidates on two different
warps. Suppose warp-i has two nodes (node-0,1) at the first
level and is current processing node-1. Warp-j has just started
its execution, and its stack is empty. The getCandidates
function obtains the next chunk of nodes from V (node-2,3)

Algorithm 2: Selecting a target warp within a thread-
block

Input: stacks of all warps in the threadblock: stks; index of the
calling warp: cur idx; number of warps in the threadblock:
NW ; query graph: Q

Output: index of the target warp: target idx; the first level in the
target that can be split: target level

1 target idx← −1;
2 target level← −1;
3 target left task ← 0;
4 for l← 0 to StopLevel do
5 for idx← 0 to NW − 1 do
6 if idx = cur idx then continue;
7 left task ← stks[idx].Csize[l]− stks[idx].iter[l]− 1;
8 if left task > target left task then
9 target idx← idx;

10 target level← l;
11 target left task ← left task;

12 if target idx ̸= −1 then
13 return target idx, target level

14 return −1, −1;

and copies them to C[0] on warp-j’s stack. This corresponds
to dividing the outermost loop of Fig. 1 and assigning different
chunks of iterations to different warps for parallel processing.
On warp-i, when the execution enters the second level, the
getCandidates function obtains the neighbor list of node-1
and copies it C[1]. This procedure is conducted in parallel
with different threads in the warp copying different elements
in the neighbor list. When l > 1, the getCandidates function
performs set operations according to the query pattern. Dif-
ferent threads in the warp are assigned different nodes in the
neighbor list and perform binary search simultaneously for set
intersection/difference.

V. LOAD BALANCING WITH TWO-LEVEL WORK
STEALING

To balance the workload among warps, we propose a two-
level work stealing technique. The idea is to let an idle
warp steal work from other warps in the same threadblock
first, and only when there is no warp to steal within the
threadblock, we let it steal from other threadblocks. We use
this two-level stealing mechanism for two reasons. First, as
there are thousands of warps on GPU, selecting the best target
to steal from all warps is expensive, whereas finding a good
target within the threadblock is much easier. Second, migrating
work within a threadblock is cheaper than across threadblocks.
Since the stack of each warp is stored in the shared memory,
work stealing within a threadblock can be done efficient in
shared memory, whereas stealing across threadblocks has to
go through global memory. This section gives a detailed
description of our two-level work stealing technique.

A. Stealing Within a Threadblock

The work stealing procedure is inserted at line 9 of Fig. 3.
Before a warp breaks out of the loop, it checks the stacks
of other warps in the same threadblock and selects the one
with the most remaining work. The selection procedure is



2

3

Csize

0, 1

0, 2, 3

C

1

1

iter

target stack after

l

1

1

Csize

1

4

C

0

0

iter

stealer stack after

l

2

4

Csize

0, 1

0, 2, 3, 4

C

1

1

iter

target stack before

l

The target warp has 
matched node 1 to 𝑢!
and node 2 to 𝑢". It has 
two remaining nodes at 
level one: 3 and 4. 

The two remaining nodes at level one are divided. The target 
warp keeps node 3, and the stealer warp obtains node 4. 

Fig. 5: An example of dividing and copying tasks from a target
warp.

shown in Algorithm 2. Starting from level zero, we check
the stack level-by-level (line 4). Since the actual remaining
work on a warp is unknown, we estimate it as the number of
unexplored nodes at each level on the stack (line 7), and we
assume that a warp with more unexplored nodes at a smaller
level has more remaining work. Once we find a warp with
at least one unexplored node at level l (line 8), we store its
index to target idx and the number of unexplored nodes to
target left task. The procedure scans all the warps in the
threadblock (line 5). If it later finds another warp that has more
unexplored nodes at the same level, it updates the target warp
(line 8-11). The selection procedure returns as soon as it finds
a target at a certain level (line 12-13). If it cannot find a target
after checking all levels, the procedure returns −1 (line 14) .

After the idle warp finds a target warp, it divides the
remaining tasks in the target warp and copies half of them to
its own stack. The procedure is illustrated in Fig. 5. Suppose
we want to match the query graph of Fig. 2 to the data graph
in Fig. 4. As shown in Fig. 5, the target warp has node 0 and 1
at level zero and has matched node 1 to u0; it has no work left
at level zero. The four neighbors of node 1 (i.e., node 0,2,3,4)
are stored in the second level of the stack, and they are the
candidates for u1. Suppose the warp has processed node 0
at level one and is processing node 2; it has two remaining
nodes: 3 and 4. We split the two nodes. Node 3 is kept in
the target warp, and node 4 is migrated to the stealer warp.
Csize[1] of the target warp is changed to 3 since one node in
C[1] has been migrated to the stealer. The stealer copies the
matching nodes from the target to its own stack from level zero
to target level− 1. The Csize are all set 1 and the iter are
all set to zero for these levels. In this example, target level is
one, so we copy the matching node at level zero of the target
(which is node 1) and set Csize[0] of the stealer to 1. For
target level, we copy the stolen nodes (node 4 in this case)
from the target to the stealer and set C[target level] to be
the number of stolen nodes. This completes the setup of both

is_idle …… ……

Stealer Target

global_stks …… ……

mark itself as idle
spin wait

detect idle

clear idle

di
vi

de
 a

nd
 

co
py

 st
ac

k

W
arp 0 copies 

stack to local

1

2

3 1

2

3

Fig. 6: Work stealing across threadblocks.

the target and the stealer stack.
Note that during the stealing process we need to lock the

target and the stealer stack to ensure consistency. This is
achieved by allocating a mutex lock for every warp (on shared
memory). We also need to add a lock function at line 6 and
an unlock function at line 9 and 16 in the while-loop of
Fig. 3. The lock and unlock function are implemented with the
CUDA atomicCAS and atomicExch instruction. The lock
instructions themselves incur little overhead to the program
since the mutex can be allocated in shared memory. The
most expensive part of the stealing procedure is the copying
of candidate nodes stored in global memory. Because of the
overhead, we want to avoid stealing when there is not enough
work left in the target warp. This can be achieved by adjusting
the StopLevel at line 4 of Algorithm 2.

B. Stealing Across ThreadBlocks

If a warp cannot find a target to steal in the same thread-
block, it goes to other threadblocks. However, this cannot be
done in the same way as stealing within a threadblock. Since
the stack of each warp is allocated in shared memory, a warp
does not have direct access to warps in a different threadblock.
We cannot let a warp check the stacks of warps in a different
threadblock and pull tasks from a target. Instead, we have to
let the target warp detect an idle warp and push tasks to it. The
procedure is illustrated in Fig. 6. We maintain two arrays of
NB elements in global memory where NB is the total number
of threadblocks. Each element in the is idle array is a bitmap
indicating idle status of warps in the threadblock. Each slot of
the global stks array stores the tasks that the stealer receives
from a target. When a warp fails to steal from warps in the
same threadblock, 1 it marks itself as idle in the is idle array
and 2 spins wait on the idle status. During the matching pro-
cess, a warp checks the status of other warps periodically. This
is achieved by adding a steal_across_block function
between line 6 and line 7 in Fig. 3. Every time a warp enters
a level, it checks if it has unexplored nodes in the previous
levels. To make sure the workload is large enough to justify
the stealing overhead, we call this function only when the
level is smaller than DetectLevel (which is a configurable
parameter in our system). If the warp has unexplored nodes
in the previous levels, 1 it scans the is idle array to see if
there is a threadblock where all the warps are marked idle. If
it finds an idle threadblock, 2 it divides and copies its tasks
to the global stk of that threadblock. The divide-and-copy



     // store candidate nodes for every unrolled iteration 

 1:  C = array(PAT_SIZE, UNROLL, MAX_DEGREE); 

 2:  Csize = array(PAT_SIZE, UNROLL); 

 3:  iter = array(PAT_SIZE); 

     // iterate for unrolled iterations 

 4:  uiter = array(PAT_SIZE); 

 5:  l = 0; 

 6:  while (true) { 

 7:    if (l < Q.size) { 

         // if in the first of the unrolled iterations 

         // and if candidate set is empty 

 8:      if (uiter[l] == 0 && Csize[l][0] == 0) { 

           // extend subgraphs for all unrolled iterations 

 9:        getCandidates(G, Q, l, C, Csize, UNROLL); 

           // if no subgraph can be extended 

10:        if (l == 0 && Csize[0][0] == 0) { 

             // try to steal from other warps 

11:           if (!local_steal()) { 

12:             if (!global_steal()) { break; }}} 

13:        iter[l] = 0; uiter[l] = 0; } 

         // if there are more unrolled iterations 

14:      if (uiter[l] < UNROLL) { 

           // and if there are unexplored nodes in current  

           // unrolled iteration, go to next level 

15:        if (iter[l] < Csize[l][uiter[l]]) { l++; } 

16:        else { 

             // if all candidates are explored in current 

             // unrolled iteration, go to next unrolled iteration 

17:          Csize[l][uiter[l]] = 0; 

18:          iter[l] = 0; 

19:          uiter[l]++; } } 

20:      else { 

           // if all unrolled iterations have been executed 

           // reset unroll iterate 

21:        uiter[l] = 0; 

           // and backtrack to previous level 

22:        if (l > 0) { l--; iter[l] += UNROLL; } } } 

23:    else {  

24:      for (i = 0; i < UNROLL; i++) Output(C, i, iter); 

25:      l--; } } 

Fig. 7: An unrolled version of the loop in Fig. 3.

procedure is the same as shown in Fig. 5. After it finishes
copying the stack to global memory, 3 the target warp clears
the idle mask for all warps in the stealer threadblock. 3 Then,
all warps in the stealer threadblock are activated, and warp
zero will get the tasks and copy them to its local stack. The
other warps will go back to the beginning of the while-loop.
Since these warps do not have any remaining tasks, they will
enter the stealing procedure again quickly, and they will try to
steal from warp zero. With this, we prioritize stealing within
a threadblock and avoid global stealing as much as possible.
The program will eventually stop when all the threadblocks
are idle.

VI. IMPROVING THREAD UTILIZATION WITH LOOP
UNROLLING

With the original loop of Fig. 3, a warp performs one set
operation at a time. If the sets have only a few elements,
most of the threads will be idle. To improve thread utilization,

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

idx = 8 set_idx = 1
set_ofs = 11

𝒔𝒆𝒕𝟏

𝒃𝒔𝒆𝒂𝒓𝒄𝒉_𝒓𝒆𝒔

size_scan = [0, 4, 17, 25]

1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

__ballot_sync() & ((1 << thread_idx) –
(1 << (size_scan[set_idx] % WARP_SIZE)))

output_ofs __popc()

Fig. 8: Perform multiple set operations in one warp.

we can unroll the loop iteration at each recursion level and
perform the set operations of the unrolled iterations together.

Fig. 7 shows the unrolled while-loop. The idea is to add
an unroll dimension to C and Csize so that the candidate
nodes of multiple iterations can be stored at the same time. In
addition to iter that stores the iterate number of the original
loop, we use an uiter to store the index of unrolled iterations.
The program iterates over the unrolled iterations and the
original loop iterations alternatively. Every time the execution
enters the next level, we compute the candidate nodes for all
the unrolled iterations together (line 9). Then, we iterate over
the candidates in each of the unrolled iterations, match each
candidate node to the query node, and go to the next level
(line 15). If all the unrolled iterations at level l have been
processed, we backtrack to the previous level and increment
the iterate of the previous level by the unroll size (line 22).

With the unrolled loop, we can combine multiple set op-
erations and process them using one warp. Fig. 8 shows the
implementation of combined set operation. We consider the
general case where M set1’s need to intersect (or difference)
with M set2’s. Each thread in the warp gets one element
from set1’s at a time. We first compute a prefix sum of the
set sizes (size scan) and use it to get the set index (set idx)
and the offset in the set (set ofs) for that element. Then, we
obtain the value of that element from C[l][set idx][set ofs].
The value and the corresponding set2[set idx] are given to
a binary search procedure, which produces a result of 0 or
1. For intersection operation, 1 means the value is found in
set2[set idx]; for difference operation, 1 means the value
is not found in set2[set idx]. Next, with the bsearch res,
we compute the output offset for each element that needs to
be written to the output. This corresponds to counting the
number of 1’s prior to that element in the same set, and it
can be efficiently implemented with the __ballot_sync()
and __popc() primitive provided by CUDA. Finally, these
elements are written to the result sets consecutively based on
set idx and output ofs. It is obvious that this combined set
operation has a higher thread utilization than computing them
one-by-one.

The divide-and-copy procedure in Fig. 5 needs to be slightly
modified to enable working stealing for the unrolled loop. We
use the same procedure for dividing and copying the tasks in
the current unrolled iteration. But for the remaining unrolled
iterations, we need to set the Csize to zero in the stealer stack
since the tasks in these iterations are not stolen from the target.



𝐶!

𝐶" 𝐶"!

𝐶#

−𝑁(𝑣!) ∩ 𝑁(𝑣!)

∩ 𝑁(𝑣")

(a) Set dependence
graph

0 1 3 4row_ptr:

set_ops: (1,x,x) (0,0,0) (0,1,0) (0,1,2)

(first_operand, intersect/difference, depends_on)

𝐶! 𝐶" 𝐶"! 𝐶#

(b) A compact storage

Fig. 9: The set dependence graph for unlabeled query of Fig. 2.

𝐶!

𝐶" 𝐶"!

𝐶#

−𝑁(𝑣!) ∩ 𝑁(𝑣!)

∩ 𝑁(𝑣")

𝐶!"

‘3’

‘2’

‘1’

‘3’

‘2’ 𝐶!#
‘3’

(a) Separate label sets

𝐶!

𝐶" 𝐶"!

𝐶#

−𝑁(𝑣!) ∩ 𝑁(𝑣!)

∩ 𝑁(𝑣")

𝐶!

‘3’

‘2’

‘1’

‘3’

‘2,3’

(b) Merged label sets

Fig. 10: The set dependence graph for labeled query of Fig. 2.
‘’ denotes the label(s) of nodes in a set.

We also need to copy uiter from level zero to target level.

VII. REDUCING REDUNDANCY WITH LOOP-INVARIANT
CODE MOTION

To show that our system is compatible with the existing
optimizations for backtracking-based graph pattern matching,
we implement the code motion technique proposed in [16] in
our system. The idea is to lift the loop-invariant part of the set
operations to upper levels so that they will not be computed
repeatedly. For example, the N(v0)∩N(v1) operation at line
10 of Fig. 1 can be moved outside of the loop at line 8. We
can store the result of N(v0)∩N(v1) and use the cached result
for every iteration of the inner loop.

While it is straightforward to apply code motion to the
nested loop in Fig. 1, it is nontrivial to incorporate this
optimization into the existing subgraph-centric systems on
GPU. In these systems, because the computation is driven
by the subgraphs, the set operation is associated with each
individual subgraph and the hierarchy of the set operations
is lost. It is not obvious how to identify the loop-invariant
operations and lift them for a batch of subgraphs. Although
the hierarchy of set operations can be recovered from the
subgraphs, maintaining a data structure to store the information
is expensive.

Since our stack-based implementation is a direct simulation
of the original nested loop, our system can be easily extended
to support code motion. To perform the lifted set operations,
we need to maintain more than one sets for each level in
the stack. Therefore, we change the first dimension of C
and Csize from PAT SIZE to the total number of sets of
all levels. We also need to change the set operations in the
getCandidates function to compute and use the results

of the lifted operations. As an example, Fig. 9a shows the
sets in the loop of Fig. 1 after code motion. In addition to
the candidate sets (C0 ∼ C4), we store an intermediate set
C21 for N(v0) ∩N(v1). The arrows indicate the dependence
among the sets: C1 is used for computing C2 and C21, and
C21 is used for computing C3. For any query graph, we can
obtain such a dependence graph with a simple code motion
analysis [16].

To pass set dependence information to getCandidates
function efficiently, we propose a compact storage of the
dependence graph as shown in Fig. 9b. The row ptr array
indicates the starting position of the sets in each level, and the
set ops array stores the set operations for each set. The set
operation is represented with three numbers. The first number
indicates whether the set operation has N(vl−1) as the first
operand at level l. In this example, since C1 = N(v0), the first
number in the first element of set ops is 1. If the first number
is 0, the set operation has N(vl−1) as the second operand. The
second number in set op indicates whether the set operation
is intersection or difference. For C2, we need to compute
C1 − N(v1), so we have 0 as the second number. For C21,
we need to compute C1 ∩N(v1), so we have 1 as the second
number. The third number is the index of the set that the
current set depends on. The two arrays take only tens of bytes
and are stored in shared memory. The getCandidates
function reads in the two arrays and performs set operations
accordingly at each level.

One limitation of the original code motion technique in [16]
is that it needs to store multiple intermediate sets for different
labels. To see this point, let us consider again the matching
of query graph of Fig. 2. Suppose we restrict u1 to label ‘a’,
u2 to label ‘b’, and u3 to label ‘c’. The dependence graph in
Fig. 9a will not work – if C1 only stores nodes of label ‘a’,
we cannot have nodes of label ‘b’ in C2. To fix this problem,
[16] separates the candidate sets from the intermediate sets
and stores nodes of different labels in different sets, as shown
in Fig. 10a. If a set of label ‘x’ is dependent on a set in
the previous level, they add an intermediate set of label ‘x’.
The labels are propagated from the bottom to the top level.
The total number of sets is at least n(n − 1)/2 where n is
the number of nodes in the query graph. While this is not a
problem on CPU, it may cause shared memory overflow in
our system as we store Csize for all the sets of all unrolled
iterations in shared memory. To reduce the usage of shared
memory, we merge the intermediate sets of different labels
that are split from the same unlabeled set into one set with
multiple labels. For example, C12 and C13 in Fig. 10a can be
merged into one set with label ‘2,3’, as shown in Fig. 10b.
The larger the query graph, the more sets we save with this
method. This enables us to support larger query graphs without
affecting the efficiency.

For work stealing, the candidate sets are divided and copied
in the same way as in Fig. 5. We also copy all the intermediate
sets that are used by sets after target level so that they need
not be computed again by the stealer.



Graph # nodes # edges Max deg. Med deg. Deg. > 4096
WikiVote 7K 100K 1065 3 0

Enron 37K 183K 1383 3 0
MiCo 96K 1.1M 1359 18 0

YouTube 1.1M 3.0M 28754 1 0.06%
LiveJournal 4M 34.7M 14815 6 0.12%

Orkut 3.1M 117.2M 33313 45 1.13%
Friendster 65.6M 1.8B 5214 9 9.1e-8%

TABLE I: Graph datasets.

VIII. EXPERIMENTAL RESULTS

In this section, we compare our system with two state-of-
the-art GPU graph pattern matching systems: cuTS [30] and
GSI [32], and a state-of-the-art CPU system: Dryadic [16].
GSI achieves consistently better (or equal) performance than
many previous CPU and GPU implementations such as CFL-
Match [3], CBWJ [18], VF3 [4], GPSM [25] and Gun-
rock [28]. CuTS has shown even better performance than GSI.
However, because cuTS1 does not support labeled queries, we
also compare with GSI2 for labeled matching tasks.

A. Experimental Setup

Platform: Our experiments are conducted on a dual-socket
machine with four Nvidia RTX3090 GPUs, two Intel Xeon
Gold 6226R 2.9GHz CPUs (32 cores in total), and 512GB
RAM. We use GCC9.4.0 and NVCC11.2 with O2 level
optimization to compile the code.
Datasets and query graphs: Table I lists the data graphs
used in our experiments. These graphs are obtained from the
SNAP [14] repository and are commonly used for evaluating
graph pattern matching systems. For query graphs, we first
adopt the queries from cuTS. CuTS uses directed query graphs.
The 33 directed queries used in their experiments actually
have only six undirected patterns. While our system supports
both directed and undirected graphs, we use undirected graphs
in our evaluation because it is a more common setup in the
graph pattern matching literature [3], [16], [25], [32], [33].
The 33 queries in cuTS experiments are covered by q7, q8,
q15, q16, q23, q24 in our experiments, among which q8, q16
and q24 are cliques (i.e., fully connected graphs). Then, we
randomly select six query graphs from size-5, size-6, size-
7 motifs, respectively. In total, we test with 24 distinct query
graphs: q1 ∼ q8 of size-5, q9 ∼ q16 of size-6, and q17 ∼ q24 of
size-7. Our system supports both labeled and unlabeled graphs.
To evaluate the performance of labeled matching, we follow
the setup in Dryadic [16] and randomly assign ten labels to the
data and query graphs. For fairness, we use the same matching
order of query nodes (adopted from Dryadic) for all systems.
Settings: In all experiments, we set the StopLevel in Algo-
rithm 2 to 2, and the DetectLevel for global work-stealing in
Section V-B to 1. The unrolling size is set to 8. We set the
MAX DEGREE of array C to 4096. The size of array C is
NUM SETS×UNROLL×MAX DEGREE×NUM WARPS. For
queries of no more than seven nodes, we have NUM SETS≤15
(this number is determined by the code motion analysis). The

1https://doi.org/10.5281/zenodo.5154114
2https://github.com/pkumod/GSI

maximum number of active warps on our GPU is 82× 32 =
2624. Thus, besides the storage of data graph, our system
consumes a fixed 4.8GB GPU memory for queries of up to
seven nodes. For graphs whose max degrees are larger than
4096, we store the extra nodes in the sets with more than 4096
nodes on CPU. Because real-world graphs are skewed and few
nodes have degrees greater than 4096 (last column in Table I),
it is very rare for the program to access CPU memory. We run
cuTS and GSI with the same number of total warps on GPU,
and run Dryadic with 64 threads on CPU.

B. Overall Performance

GSI and cuTS are subgraph isomorphism systems: they
obtain edge-induced subgraphs that are isomorphic to the
query graph. Thus, we configure our system and Dryadic to
run edge-induced matching (by removing the set difference
operations) and compare with the two systems. Table II(a)
lists the execution time of unlabeled edge-induced queries
on a single GPU. We do not list the execution time of GSI
in this table because it either aborts or is dominated by
cuTS. We can see that Dryadic consistently outperforms cuTS,
while our system outperforms both Dryadic and cuTS for all
testcases. Compared with cuTS, our system achieves up to
3385x speedups with an average of 694x. Compared with
Dryadic, our system achieves up to 52x speedups with an
average of 11x.

Table III lists the execution time of labeled edge-induced
queries on a single GPU. Our system shows consistently better
performance than the other two systems. It achieves 24x to
991x speedups against GSI, and 1.4x to to 898x speedups
against Dryadic. The speedups are more significant on larger
data graphs. The average speedup against GSI is 67x, 89x
and 306x for WikiVote, Enron and YouTube, respectively. The
average speedup against Dryadic grows from 6x to 56x for
different graphs. The results indicate that our system scales
better on large graphs compared to GSI and Dryadic.

We also compare with Dryadic for vertex-induced matching.
For q8, q16 and q24 which are cliques, vertex-induced matching
is the same as edge-induced. The execution time of unlabeled
queries is shown in Table II(b). Our system outperforms
Dryadic for all testcases with a maximum speedup of 30x
and an average speedup of 6x.

Our system can be easily run on multiple GPUs by du-
plicating the input graph and dividing the outermost loop
iterations (i.e., V in Fig. 4) across GPUs. Fig. 11 shows
the speedups of running labeled and unlabeled q9 ∼ q16 on
LiveJournal, Orkut and MiCo with two and four GPUs. Our
system can also be extended to run on distributed GPU clusters
with slight changes in the work-stealing procedure to take the
communication cost across machines into consideration.

C. Benefits of Proposed Techniques

To show the effectiveness of our work-stealing and loop
unrolling techniques, we perform an ablation study on our sys-
tem. We first run a naive version without work-stealing and
loop unrolling. Then, we allow the warps to steal workloads



WikiVote Enron MiCo
Our Dryadic cuTS Our Dryadic cuTS Our Dryadic

q1 492 4534 168512 349 3002 155051 22367 128527
q2 1689 9543 110529 2033 7814 89721 96785 105408
q3 131 3045 41077 137 2866 36946 20327 46350
q4 295 3451 31679 355 4151 25935 32288 70327
q5 246 1647 15612 185 2411 16357 26398 142830
q6 109 713 29449 73 593 24455 14330 23623
q7 23 679 11845 32 808 12502 4153 171986
q8 36 120 9602 62 146 9990 1597 23267
q9 2932 5271 × 2095 6860 × 1408189 4028865
q10 27904 215643 × 33514 362646 × 4752770 −
q11 1858 41214 × 1641 61693 × 1358694 −
q12 8993 315366 × 9807 510956 × 5636367 −
q13 7485 54704 × 5995 61520 × 4368254 −
q14 651 1423 165745 981 2071 204686 1827655 9364411
q15 88 598 137895 107 886 160304 196210 1237420
q16 48 288 131286 47 305 160022 56089 92557
q17 5599 5963 × 5228 9167 × − −
q18 39178 235003 × 31010 344761 × − −
q19 9634 131236 × 13417 162903 × − −
q20 3608 31267 × 3995 38992 × − −
q21 2000 5361 × 4150 7917 × − −
q22 2075 33991 × 2194 41391 × − −
q23 265 1645 × 338 2607 × 8926635 −
q24 139 531 × 129 608 × 1982441 2530072

(a) Edge-induced

WikiVote Enron MiCo
Our Dryadic Our Dryadic Our Dryadic
296 3169 229 2216 5365 36026
850 6949 1075 4863 20383 69869
106 1429 101 731 1946 14486
186 1471 206 674 3339 12361
194 1767 133 640 3439 13105
65 468 41 200 882 2397
28 178 34 96 6255 23963
36 120 62 146 1597 23267

2088 14515 1455 4947 82274 487075
6380 63026 8871 40426 109851 801632
707 8921 388 2355 4837 34842

21384 294242 22693 144714 1173245 9161840
2668 80389 1659 22919 43399 762982
497 2279 814 1480 275703 923136
86 579 110 307 315526 1298950
48 288 47 305 56089 92557

2216 7667 1399 2639 2159917 4488633
6729 16586 4469 4681 750974 896309
2301 3968 1091 1437 142918 164562
2037 13433 1645 5007 1889880 2854831
1567 4236 2732 2860 − −
996 3940 902 1770 3235240 6674460
285 1089 356 535 17854918 −
139 531 129 608 1982441 2530072

(b) Vertex-induced

TABLE II: Execution time (in milliseconds) of different systems for unlabeled matching. ‘×’ indicates program failure due
to out-of-memory. ‘−’ indicates timeout after 8 hours. CuTS only supports edge-induced matching. It fails for all queries on
MiCo.

0
0.5

1
1.5

2
2.5

3
3.5

4

q9 q10 q11 q12 q13 q14 q15 q16 q9 q10 q11 q12 q13 q14 q15 q16 q9 q10 q11 q12 q13 q14 q15 q16

Unlabel-MiCo Labeled-LiveJournal Labeled-Orkut

1 GPU 2 GPU 4GPU

Fig. 11: Speedups of labeled and unlabeled size-6 queries across multiple GPUs.

from other warps within the threadblock (localsteal)
and across threadblocks (local+globalsteal). Last, we
unroll the loops and make each warp perform multiple set op-
erations simultaneously (unroll+local+globalsteal).

Fig. 12 shows the execution time of different versions for
labeled size-6 queries on different graphs. We can see that
local work-stealing brings the most benefit to our system,
achieving more than 2x speedups for almost all testcases.
Global work-stealing further improves the performance on
MiCo and LiveJournal where the workload is large enough to
justify the overhead of copying stacks among threadblocks. It
achieves 1.3x to 2.0x speedups on top of local work-stealing on
MiCo graph and 1.1x to 1.3x speedups on LiveJournal. Global
stealing is less effective on Enron and YouTube as the work-
load in each warp is already small after applying local work-
stealing. The execution time with global stealing is almost the
same as without global stealing on these two graphs, indicating
that the overhead of our global work-stealing technique is
small. To show direct evidence of improvement brought by
work-stealing, we profile our system with Nvidia Nsight and
obtain warp occupancy with and without work-stealing. The
occupancy numbers are labeled in the figures, and they are

consistent with the speedups.
After applying loop unrolling, the performance is further im-

proved. Fig. 13 shows the thread utilization of various queries
with different unrolling sizes. As expected, a larger unrolling
size leads to higher utilization. Due to increased thread utiliza-
tion, loop unrolling achieves 1.1x to 2.6x speedups on top of
local+globalsteal on MiCo, and 1.1 to 1.9x speedups
on LiveJournal. Compared to naive version, work-stealing and
loop unrolling together achieve up to 12x speedups. All the
versions above use code motion. If we disable code motion,
the naive baseline will be about 3x slower.

IX. RELATED WORK

Graph pattern matching and its related problems have been
extensively studied in the past decades. Numerous systems
with different algorithms have been proposed. As we focus on
parallelizing backtracking in this work, we give a summary of
backtracking-based graph pattern matching systems.
CPU-based systems: The study of subgraph isomorphism
problem dates back to 1970s. Ullmann [27] proposes the first
backtracking algorithm that iteratively matches query nodes
on data graph based on a certain order. Many studies follow



WikiVote Enron YouTube MiCo LiveJournal Orkut Friendster
Our Dryadic GSI Our Dryadic GSI Our Dryadic GSI Our Dryadic Our Dryadic Our Dryadic Our Dryadic

q1 6 52 307 8 41 527 28 188 × 49 231 558 7524 6701 459615 59850 290752
q2 6 43 276 9 44 514 51 204 11656 44 335 534 6402 7874 91568 59998 420521
q3 4 37 193 8 26 415 22 66 9856 12 168 224 3101 359 7595 5681 35879
q4 5 37 194 7 34 445 24 876 9596 31 243 403 4518 2014 17267 6563 199131
q5 4 29 179 7 31 440 25 79 9425 30 132 388 3082 2456 3723 5788 35462
q6 4 32 193 8 28 399 23 124 9694 30 163 385 4360 987 5326 8289 38578
q7 4 31 170 6 31 426 22 92 9498 11 155 232 3682 332 3221 4829 39381
q8 4 36 170 7 34 433 22 97 10150 29 205 361 4667 550 2602 5400 39469
q9 4 28 336 6 139 631 23 84 11531 59 1358 1188 58189 7778 12585 6331 55096
q10 6 77 3453 10 104 6371 54 605 × 108 4937 2083 133943 16867 800817 21219 631370
q11 5 50 454 8 83 1019 27 406 26830 92 2468 1479 130529 1585 1423820 9975 273557
q12 7 50 532 10 65 1043 320 461 34503 362 2693 5943 127701 16316 415670 10472 239624
q13 6 60 434 9 48 754 42 173 11659 86 2048 1487 121818 3788 503492 8078 109472
q14 5 28 183 7 40 450 39 120 9898 436 1550 6927 110435 1288 6013 7726 66602
q15 4 35 211 7 40 424 23 128 9640 88 2230 1212 156588 814 5933 5816 71651
q16 5 49 219 8 39 409 35 152 9759 456 2592 6695 172881 1115 5438 6800 73175
q17 7 43 209 10 39 468 86 155 10053 7313 44682 241432 4163993 7064 18595 12417 115459
q18 8 48 236 11 53 469 65 277 9851 7337 59603 247403 7811903 11116 39459 20339 139946
q19 10 75 251 11 55 513 70 319 9718 7176 55240 228997 7362388 7777 53865 14304 155747
q20 6 55 224 13 53 492 179 253 10582 1129 61624 30353 6278270 6859 27509 11451 136761
q21 6 61 224 10 63 439 54 219 10429 7273 46943 201273 4233415 4286 20143 12280 134500
q22 6 55 202 9 48 465 62 244 10033 1518 56191 35000 7102923 2685 23024 8449 138652
q23 6 48 233 9 44 454 64 324 10149 1522 48920 32808 5669286 1645 20310 7799 140028
q24 6 42 203 9 52 442 58 289 10133 7312 65286 196941 7166516 3395 19515 10332 146617

TABLE III: Execution time (in milliseconds) of different systems for labeled edge-induced matching. GSI fails for all queries
on MiCo, LiveJournal, Orkut and Friendster.

48.57
37.42 48.07 40.26 45.22 47.75 49.01 47.76

66.65

62.01

65.8

63.46
64.91

65.59 66.47 65.65

66.69

73.94

68.86

64.7 59.66

75.08 66.94 60.14

0

2

4

6

8

10

q9 q10 q11 q12 q13 q14 q15 q16

Sp
ee
du
p

naïve
localsteal
local+globalsteal
unroll+local+globalsteal

Occupancy=

(a) Enron

9.14 9.92 9.85 7.22 9.24 6.81 9.17 7.03

28.24 29.05 28.64

25.32 28.45

25.73 27.5 25.47

70.07 80.25
69.29

65.15 69.72
66.24 66.7 64.28

0
2
4
6
8
10
12
14

q9 q10 q11 q12 q13 q14 q15 q16

Sp
ee
du
p

naïve
localsteal
local+globalsteal
unroll+local+globalsteal

Occupancy=

(b) MiCo

61.18 22.95 47.05 12.9 49.12 40.78 59.49 43.21
66.56

42.72

60.56

37.76

62.21
57.02

65.95

57.8766.69

58.85

64.68

65.63

61.25 62.44

66.74
65.3

0

1

2

3

4

5

q9 q10 q11 q12 q13 q14 q15 q16

Sp
ee
du
p

naïve
localsteal
local+globalsteal
unroll+local+globalsteal

Occupancy=

(c) YouTube

23.36 31.01 29.37 19.26 25.96 18.32 25.66 18.26

66.18
66.38

66.15

66.26

66.15 66.08
65.16 66.04

67.25
66.75

66.69

65.63

64.8 67.44 68.11 70.02

0

2

4

6

8

q9 q10 q11 q12 q13 q14 q15 q16

Sp
ee
du
p

naïve
localsteal
local+globalsteal
unroll+local+globalsteal

Occupancy=

(d) LiveJournal

Fig. 12: Speedups of labeled size-6 queries with and without work-stealing and loop unrolling.

0

0.2

0.4

0.6

0.8

1

1.2

q10-Enron
q12-Enron

q9-MiCo
q11-MiCo

q10-Youtube

q12-Youtube

q11-LiveJournal

q13-LiveJournal

Th
re

ad
 U

til
iza

tio
n

unroll1 unroll2 unroll4 unroll8

Fig. 13: Thread utilization with different unrolling sizes.

this seminal work and propose different strategies to optimize
the matching order [5], [18], [22], [33]. They show that a good
matching order can significantly reduce the exploration space
and accelerate the matching process. Some recent work show
that a dynamic matching order based on the local topology

and label distribution of the data graph can further reduce
the exploration space [3], [8], [9], [13]. A more recent work,
Dryadic [16], proposes to search for an optimal static matching
order and optimize the computation tree instead of input
adaptation. It achieves state-of-the-art performance on CPU
compared with the earlier systems. Since matching order is
not the focus of this work, we simply adopt the matching
order of Dryadic in our system. However, our system can be
extended with any of the previous matching order strategies.

GPU-based systems: There are a number of GPU systems
for subgraph isomorphism. All of them are subgraph-centric.
Some systems [25], [28], [32] adopt a breadth-first extension
order that favors GPU architecture. They store all partial
subgraphs of a certain size before exploring larger subgraphs.
Due to the large intermediate exploration space, the partial
subgraphs can easily exceed the GPU memory limit. To reduce



the memory consumption, some other works adopt a hybrid
DFS and BFS extension order [15], [30]. Given a memory
capacity, they pre-allocate a portion of memory for each level.
To generate the partial subgraphs for next level, they take a
set of partial subgraphs at current level that are estimated to fit
into the pre-allocated memory. The procedure is repeated for
each level until all matching subgraphs are found. CuTS [30]
proposes a compact trie-based data structure to further reduce
the size of intermediate subgraphs. It reportedly achieves the
state-of-the-art performance on GPU compared with earlier
systems. Previous work has also considered exploiting multiple
GPUs to accelerate pattern matching on large graphs [7], [30].
PBE [7] proposes a matching algorithm on partitioned graphs
so that each GPU only holds a portion of the data graph.
Distributed systems: Graph pattern matching has also been
studied on distributed systems [2], [11], [12], [21], [23], [29],
[31]. The main challenge is to balance the workload among
machines. CECI [2] proposes a compact embedding cluster
index to divide the data graph into multiple embedding clusters
for parallel processing. They design a proactive workload bal-
ancing strategy with a search cardinality based cost function.
RADS [21] proposes a region-grouped multi-round expand
technique to reduce communication and minimize intermediate
result storage. BENU [29] proposes a task splitting technique
based on node degree to optimize the load balance among
machines. GraphPi [23] uses a communication thread to main-
tain a task queue on each machine and steal work from other
machines when its task is smaller than a threshold.

X. CONCLUSION

In this work, we study the parallelization of backtracking-
based graph pattern matching on GPU. We propose a stack-
based implementation that avoids the synchronization and
memory consumption issues of previous systems. We also
show that the performance of our system can be improved
by applying a series of loop optimizations. The experiments
show that our system significantly outperforms the state-of-
the-art solutions.

ACKNOWLEDGEMENTS

This work was supported by NSF award CCF-2028825. The
authors thank Bo Wu and Han Wei from Colorado School of
Mines for helpful discussions and sharing the code of Dryadic.

REFERENCES

[1] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata
Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper
Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, et al.
Sisa: Set-centric instruction set architecture for graph mining on
processing-in-memory systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 282–297, 2021.

[2] Bibek Bhattarai, Hang Liu, and H Howie Huang. Ceci: Compact
embedding cluster index for scalable subgraph matching. In Proceedings
of the 2019 International Conference on Management of Data, pages
1447–1462, 2019.

[3] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient
subgraph matching by postponing cartesian products. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD
’16, page 1199–1214, New York, NY, USA, 2016. Association for
Computing Machinery.

[4] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento.
Challenging the time complexity of exact subgraph isomorphism for
huge and dense graphs with vf3. IEEE transactions on pattern analysis
and machine intelligence, 40(4):804–818, 2017.

[5] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
A (sub) graph isomorphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelligence, 26(10):1367–
1372, 2004.

[6] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng Yao, Qinggang
Wang, and Hai Jin. Sumpa: Efficient pattern-centric graph mining
with pattern abstraction. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 318–
330. IEEE, 2021.

[7] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and
Kian-Lee Tan. Gpu-accelerated subgraph enumeration on partitioned
graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1067–1082, 2020.

[8] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-
Shin Han. Efficient subgraph matching: Harmonizing dynamic program-
ming, adaptive matching order, and failing set together. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD
’19, page 1429–1446, New York, NY, USA, 2019. Association for
Computing Machinery.

[9] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: To-
wards ultrafast and robust subgraph isomorphism search in large graph
databases. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, page 337–348, New
York, NY, USA, 2013. Association for Computing Machinery.

[10] Juris Hartmanis. Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson). Siam Review,
24(1):90, 1982.

[11] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph
enumeration in mapreduce: a cost-oriented approach. The VLDB
Journal, 26(3):421–446, 2017.

[12] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu
Yang. Scalable distributed subgraph enumeration. Proceedings of the
VLDB Endowment, 10(3):217–228, 2016.

[13] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee.
An in-depth comparison of subgraph isomorphism algorithms in graph
databases. Proceedings of the VLDB Endowment, 6(2):133–144, 2012.

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[15] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. Network motif
discovery: A gpu approach. IEEE transactions on knowledge and data
engineering, 29(3):513–528, 2016.

[16] Daniel Mawhirter, Samuel Reinehr, Wei Han, Noah Fields, Miles Claver,
Connor Holmes, Jedidiah McClurg, Tongping Liu, and Bo Wu. Dryadic:
Flexible and fast graph pattern matching at scale. In 2021 30th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 289–303. IEEE, 2021.

[17] Daniel Mawhirter and Bo Wu. Automine: Harmonizing high-level
abstraction and high performance for graph mining. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
page 509–523, New York, NY, USA, 2019. Association for Computing
Machinery.

[18] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by
combining binary and worst-case optimal joins. Proc. VLDB Endow.,
12(11):1692–1704, July 2019.

[19] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: simple building blocks of
complex networks. Science, 298(5594):824–827, 2002.

[20] Steven Noel. A review of graph approaches to network security
analytics. From Database to Cyber Security, pages 300–323, 2018.

[21] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jeffrey Xu Yu.
Fast and robust distributed subgraph enumeration. arXiv preprint
arXiv:1901.07747, 2019.

[22] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Tam-
ing verification hardness: An efficient algorithm for testing subgraph
isomorphism. Proc. VLDB Endow., 1(1):364–375, August 2008.

[23] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. Graphpi: High
performance graph pattern matching through effective redundancy elim-
ination. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14. IEEE, 2020.



[24] Jiya Su, Linfeng He, Peng Jiang, and Rujia Wang. Exploring pim
architecture for high-performance graph pattern mining. IEEE Computer
Architecture Letters, 20(2):114–117, 2021.

[25] Ha-Nguyen Tran, Jung-jae Kim, and Bingsheng He. Fast subgraph
matching on large graphs using graphics processors. In International
Conference on Database Systems for Advanced Applications, pages 299–
315. Springer, 2015.

[26] Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph frequen-
cies: Mapping the empirical and extremal geography of large graph
collections. In Proceedings of the 22nd International Conference on
World Wide Web, WWW ’13, page 1307–1318, New York, NY, USA,
2013. Association for Computing Machinery.

[27] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM (JACM), 23(1):31–42, 1976.

[28] Leyuan Wang, Yangzihao Wang, and John D Owens. Fast parallel
subgraph matching on the gpu. In HPDC, 2016.

[29] Zhaokang Wang, Rong Gu, Weiwei Hu, Chunfeng Yuan, and Yihua
Huang. Benu: Distributed subgraph enumeration with backtracking-
based framework. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 136–147. IEEE, 2019.

[30] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and
Aravind Sukumaran-Rajam. cuts: scaling subgraph isomorphism on
distributed multi-gpu systems using trie based data structure. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–14, 2021.

[31] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, and Wenjie
Zhang. Huge: An efficient and scalable subgraph enumeration system.
In Proceedings of the 2021 International Conference on Management
of Data, pages 2049–2062, 2021.

[32] Li Zeng, Lei Zou, M Tamer Özsu, Lin Hu, and Fan Zhang. Gsi:
Gpu-friendly subgraph isomorphism. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1249–1260. IEEE,
2020.

[33] Peixiang Zhao and Jiawei Han. On graph query optimization in large
networks. Proc. VLDB Endow., 3(1–2):340–351, September 2010.



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
This artifact includes the code and scripts for reproducing the re-
sults of our system (STMatch) and compared systems (cuTS, GSI,
Dryadic) in our experiments. The code is available on GitHub:
https://github.com/HPC-Research-Lab/STMatch.git.
Hardware and Software Requirements. The code should be
able to run on any Linux machine with Nvidia GPUs. To repro-
duce the results in the paper, the program should be run on the
following platform:

• OS: Ubuntu 20.04.4 LTS
• Compiler: NVCC11.2, g++9.4.0
• GPU: NVIDIA GeForce RTX 3090
• CPU: a dual socket machine with Intel Xeon Gold 6226R
2.9GHz CPUs (32 cores in total) and 512GB RAM.

Experimental Workflow. There are mainly two steps to run the
experiments:

• Follow the instructions in the ‘README’ of main directory
to prepare the input data and reproduce results of STMatch.

• Follow the instructions in the ‘README’ of ‘Com-
paredSystems/Dryadic’, ‘ComparedSystems/CuTS’ and
‘ComparedSystems/GSI’ directory to reproduce results of
cuTS, GSI and Dryadic.

Run with Docker. Our code does not depend on any external
library, so the easiest way to run the code is to compile and run
on the host machine. However, we also provide a podman/docker
image that contains the source code and test data. The image can
be launched by podman or docker. To use the host GPU within the
container, one needs to do some setup on the host as instructed on
this webpage:

https://docs.nvidia.com/datacenter/cloud-native/
container-toolkit/install-guide.html#podman

• Container Running Dependency:
nvidia-container-toolkit

• The Image Link:
https://hub.docker.com/r/paperanonymous/stmatch

• Code Directory In the Container:
/workspace/STMatch/

• Pull Command:
podman pull paperanonymous/stmatch:v0

• Run Command:
podman run –rm –security-opt=label=disable
–hooks-dir=/usr/share/containers/oci/hooks.d/
-it 7d9fcee1c590 /bin/bash

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6991445
Artifact name: STMatch

Reproduction of the artifact with container: A podman/docker
image that contains the source code, software dependencies, and

some test data is provided. The image can be launched by podman
or docker. However, to use host GPU within the container, one
needs to do some setup on the host as instructed in the AD/AE.

We also provide bash scripts for preparing input data, compiling
the source code, and reproducing results in the experiments. Details
can be found in the GitHub repository.

https://github.com/HPC-Research-Lab/STMatch.git
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#podman
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#podman

