STMatch: Accelerating Graph Pattern Matching on GPU with Stack-Based Loop Optimizations

Yihua Wei
University of Iowa
Iowa City, USA
yihua-wei@uiowa.edu

Peng Jiang
University of Iowa
Iowa City, USA
peng-jiang@uiowa.edu

Abstract—Graph pattern matching is a fundamental task in many graph analytics and graph mining applications. As an NP-hard problem, it is often a performance bottleneck in these applications. Previous work has proposed to use GPU to accelerate the computation. However, we find that the existing GPU solutions fail to show a performance advantage over the state-of-the-art CPU implementation due to their subgraph-centric design. This work proposes a novel stack-based graph pattern matching system on GPU that avoids the synchronization and memory consumption issues of the previous subgraph-centric systems. We also propose a two-level work-stealing and a loop-unrolling technique to improve the inter-warp and intra-warp GPU resource utilization of our system. The experiments show that our system significantly advances the state-of-the-art for graph pattern matching on GPU.

Index Terms—Parallel programming, Backtracking

I. INTRODUCTION

Graph pattern matching is widely used for retrieving information from graph-structured data in many application domains, including bioinformatics [19], social network analysis [26], and cybersecurity [20]. The problem stems from the well-known subgraph isomorphism problem, which aims to find all subgraphs that are isomorphic to a given query pattern, and it is the fundamental task for many related problems, such as motif counting and clique listing [17].

Due to its importance in real applications, graph pattern matching has been extensively studied in the past decades. Numerous algorithms and implementations have been proposed [3], [5], [8], [9], [13], [18], [22], [27], [33]. However, as the problem is NP-hard [10], it is still a performance bottleneck in many applications, and it is always desirable to scale the computation to large graphs. Therefore, there is a growing interest in exploiting the massive parallelism on GPU to accelerate the computation [25], [28], [30], [32].

Despite their different optimizations, the existing GPU graph pattern matching systems all take a subgraph-centric approach. They maintain a list of valid partial subgraphs and extend them by one vertex/edge in each step until the desired pattern size is reached. To extend a partial subgraph, they either add a new edge to it by performing a binary join operation [25], [28], or they find a match for the next pattern node by performing set operations on the neighbor lists of the previous nodes [30], [32]. A common feature of these systems is that they need to store the partially matched subgraphs explicitly. For example, GSI [32] stores the partial subgraphs in a table, and it assigns each partial subgraph to a warp on GPU for extension. A more recent work, cuTS [30], reduces the memory consumption by using a trie-based data structure to store the partial subgraphs. It also improves GPU thread utilization by assigning each partial subgraph to a virtual warp.

The subgraph-centric implementation facilitates parallelization; however, it has several inherent issues for GPU execution. First, it requires synchronization at the end of each extension step. The current systems maintain a list of partial subgraphs and launch a GPU kernel to process them at every step. The kernel launch and the synchronization incur an overhead. Second, the partial subgraphs take a lot of memory space. Although a hybrid DFS and BFS extension order can alleviate the issue [30], it requires much more kernel launches and synchronizations. Third, the subgraph-centric implementation loses the implicit hierarchy of partial subgraphs and thus disables some optimizations that can be applied to the backtracking procedure (e.g., loop-invariant code motion and pattern merging [16]). As a result, the state-of-the-art GPU graph pattern matching system (cuTS [30]) can be even slower than a highly optimized CPU implementation (Dryadic [16]) in many cases (See Table II).

To overcome the limitations of the subgraph-centric systems, we study the parallelization of backtracking on GPU in this work. We first show that the subgraph-centric approach taken by the existing systems corresponds to the inner-loop parallelization of the backtracking algorithm. Unlike the previous systems, we choose to parallelize the backtracking procedure from the outermost loop. This eliminates the synchronization on GPU and enables our system to finish the computation with one kernel launch. The main issue with this outer-loop parallelization is that it suffers from severe load imbalance. We address the issue by adopting a stack-based implementation of the backtracking algorithm and proposing a two-level work-stealing technique. We also observe that the intra-warp thread utilization is low when the data graph is sparse. This is because most nodes in these graphs have only a few neighbors and the set operations cannot occupy all the threads in a warp. To improve the thread utilization, we propose a loop-unrolling technique that combines the set operations for multiple sets and assigns them to a single warp. Finally, as pointed out in [16], the backtracking procedure...
Algorithm 1: Backtracking for graph pattern matching

Input: a data graph \(G \) and a query graph \(Q \)
Output: all subgraphs in \(G \) that are isomorphic to \(Q \)

1. \(\pi \leftarrow \) generate a matching order;
2. \(\text{Enumerate}(G, Q, \pi, \{\}, 0) \);
3. \(\text{Procedure} \) \(\text{Enumerate}(G, Q, \pi, m, l) \):
4. if \(l = Q.\text{size} \) then \(\text{Output} \ m; \text{return} \);
5. \(u \leftarrow \pi[l] \);
6. \(C_m(u) \leftarrow \text{GetCandidates}(G, Q, \pi, m, l) \);
7. foreach \(v \in C_m(u) \) do
 8. \(\text{Add} \ v \text{to} \ m; \)
9. \(\text{Enumerate}(G, Q, \pi, m, l + 1) \);
10. \(\text{Remove} \ v \text{from} \ m; \)

// \(u \) can be mapped to any node in data graph
1. \(C_0 = V \);
2. for (\(i_0 = 0 \); \(i_0 < C_0.\text{size} \); \(i_0++ \)) {
3. \(v_0 = C_0[i_0] \); // \(u_0 \) is a neighbor of \(u_0 \)
4. \(C_1 = N(v_0) \);
5. for (\(i_1 = 0 \); \(i_1 < C_1.\text{size} \); \(i_1++ \)) {
6. \(v_1 = C_1[i_1] \); // \(u_1 \) is a neighbor of \(u_0 \) but not a neighbor of \(u_1 \)
7. \(C_2 = N(v_1) - N(v_0) \);
8. for (\(i_2 = 0 \); \(i_2 < C_2.\text{size} \); \(i_2++ \)) {
9. \(v_2 = C_2[i_2] \); // \(u_2 \) is a neighbor of \(u_0, u_1 \) and \(u_2 \)
10. \(C_3 = N(v_1) \cap N(v_2) \cap N(v_0) \);
11. for (\(i_3 = 0 \); \(i_3 < C_3.\text{size} \); \(i_3++ \)) {
12. \(v_3 = C_3[i_3] \);
13. Output(\(\{ v_0, v_1, v_2, v_3 \} \));
}
}

Fig. 1: Graph pattern matching implemented as a nested loop. \(N(v) \) means the neighbors of node \(v \) in the data graph.

Fig. 2: A query graph.
workload in distributed systems [2], [16], [23]. However, their

Previous work has also adopted work-stealing to balance the
degrades dramatically for queries of more than five nodes.
well for queries of up to four nodes, we find the load balance
the computation based on edges [16], [17]. While they work
proposed to combine the first two loop levels and distribute
suffer from severe load imbalance. Previous CPU systems have
parallelize the loop at the outermost level, the program will
node in the matching procedure varies significantly. If we
world graphs are irregular, the workload associated with each

C. GPU Architecture

There are two types of parallelism on GPU: SIMT (Single
Instruction Multiple Threads) and MIMD (Multiple Instruction
Multiple Data). The GPU threads are organized into warps,
and the threads within a warp execute the same instruction
simultaneously. For branch statements, if different threads in
a warp need to execute different branches, they have to execute
one by one. The situation is called thread divergence, and it
hurts the performance because only a portion of the threads
in a warp can be active at a time. The warp is the smallest
scheduling unit on GPU. Different warps can execute different
instructions on different data. The warps are further organized
into threadblocks (also called cooperative thread arrays) and
are launched together onto the streaming multiprocessors.

A GPU typically has tens of streaming multiprocessors. Each
streaming multiprocessor has a number of registers and a
programmable cache called shared memory. Although it is
possible to declare more register variables than the physical
registers in a CUDA program, the variables will be spilled
to constant memory, which may significantly slow down the
program. All the threads in a threadblock can access the shared
memory. The shared memory is much faster than the GPU
global memory but also much smaller. The typical size of
shared memory on a streaming multiprocessor is tens of KB.
When a threadblock uses more shared memory than what is
available on a streaming multiprocessor, it cannot be launched.
A modern GPU can run more than 1K threads simultaneously
on a streaming processing, but the shared memory usually puts
a limit on the number of threads that can be active.

III. CHALLENGES FOR PARALLELIZING BACKTRACKING

We now consider the parallelization of the nested loop in
Fig. 1 for GPU execution.

Challenge 1: Load imbalance among warps. As real-
world graphs are irregular, the workload associated with each
node in the matching procedure varies significantly. If we
parallelize the loop at the outermost level, the program will
suffer from severe load imbalance. Previous CPU systems have
proposed to combine the first two loop levels and distribute
the computation based on edges [16], [17]. While they work
well for queries of up to four nodes, we find the load balance
degrades dramatically for queries of more than five nodes.
Previous work has also adopted work-stealing to balance the
workload in distributed systems [2], [16], [23]. However, their
work-stealing strategy cannot be directly applied to GPU due
to the memory hierarchy and the lack of signaling mechanism
on GPU. Another solution is to parallelize the inner loops. The
subgraph-centric approach taken by the existing GPU graph
pattern matching systems actually falls into this category. They
materialize the intermediate results of each loop level (i.e.,
the partial subgraphs) and distribute the partial subgraphs
to different warps. The downside of this approach is that it
requires a synchronization at the end of each extension step
and the materialization of intermediate results consumes a lot
of memory.

Challenge 2: Thread underutilization within a warp. Since
the threads within a warp execute in a SIMD manner, it is
natural to assign each subgraph to a warp and use 32 threads
to perform the set operation (at line 7 and 10 in Fig. 1). The
problem is that, because the number of elements in each set is
upper bounded by the degree of nodes in the data graph, the
sets usually have less than 32 nodes. As shown in Table I, the
median degrees of most real-world graphs are much smaller
than 32. This leads to idle threads during execution. While the
problem can be easily solved by assigning multiple subgraphs
to a warp in a subgraph-centric system [30], it is nontrivial
if we want to parallel the loop from the outermost level and
avoid the explicit storage of partial subgraphs.

Challenge 3: Redundant computation. As pointed out
in [16], the nested loop conducts a lot of redundant set
operations in its original form. For example, the result of
\(N(v_0) \cap N(v_1) \) at line 10 of Fig. 1 is the same for all iterations
of the loop at line 8 because the computation is independent
of \(v_2 \). We can lift this set operation outside the loop at line 8 to
eliminate the redundant computation. While this code motion
technique is easy to implement on CPU, it require a more
careful design of data structures for storing the code motion
information on GPU. In particular, the code-motion technique
in [16] needs to store multiple intermediate sets for different
labels in each loop level. If naively applied to our system, it
may cause shared memory overflow for large labeled queries.

IV. OVERVIEW OF STMATCH

Our system is built around a stack-based implementation of
Algorithm 1. The idea is to simulate the recursive procedure
by explicitly maintaining a function call stack. As shown in
Fig. 3, the call stack is composed of three arrays \(C, Csize \)
and \(iter \), which store the candidate nodes, the number of
candidate nodes, and the loop iterate for each recursion level.
A variable \(l \) is used to indicate the current recursion level
and is initialized to 0. Every time the execution enters the
next level, we getCandidates based on the data graph \(G \),
the query graph \(Q \), and the current level \(l \) (line 8 in Fig. 3
corresponding to line 6 in Algorithm 1). Then, we iterate over
the candidates, match each candidate node to the query node,
and go to the next level (line 11 in Fig. 3 corresponding to
line 9 in Algorithm 1). The matching subgraphs are output
at the last level (line 16 in Fig. 3 corresponds to line 4 in
Algorithm 1). If all candidate nodes at level \(l \) have been
processed, we backtrack to the previous level (line 14 in Fig. 3
corresponding to return from `Enumerate` function at line 9 in Algorithm 1). The algorithm stops when all candidate nodes at level zero have been processed (line 9 in Fig. 3).

For GPU execution, we run the while-loop of Fig. 3 independently on different warps. A call stack is allocated for each warp. Since `Csize`, `iter`, and `l` are small, we allocate them in shared memory. `C` is allocated in global memory. Different warps execute the same piece of code, but they obtain different nodes when `l = 0` with the `getCandidates` function. Fig. 4 illustrates the procedure of `getCandidates` on two different warps. Suppose warp-i has two nodes (node-0,1) at the first level and is current processing node-1. Warp-j has just started its execution, and its stack is empty. The `getCandidates` function obtains the next chunk of nodes from `V` (node-2,3) and copies them to `C[0]` on warp-j’s stack. This corresponds to dividing the outermost loop of Fig. 1 and assigning different chunks of iterations to different warps for parallel processing. On warp-i, when the execution enters the second level, the `getCandidates` function obtains the neighbor list of node-1 and copies it `C[1]`. This procedure is conducted in parallel with different threads in the warp copying different elements in the neighbor list. When `l > 1`, the `getCandidates` function performs set operations according to the query pattern. Different threads in the warp are assigned different nodes in the neighbor list and perform binary search simultaneously for set intersection/difference.

V. LOAD BALANCING WITH TWO-LEVEL WORK STEALING

To balance the workload among warps, we propose a two-level work stealing technique. The idea is to let an idle warp steal work from other warps in the same threadblock first, and only when there is no warp to steal within the threadblock, we let it steal from other threadblocks. We use this two-level stealing mechanism for two reasons. First, as there are thousands of warps on GPU, selecting the best target to steal from all warps is expensive, whereas finding a good target within the threadblock is much easier. Second, migrating work within a threadblock is cheaper than across threadblocks. Since the stack of each warp is stored in the shared memory, work stealing within a threadblock can be done efficiently in shared memory, whereas stealing across threadblocks has to go through global memory. This section gives a detailed description of our two-level work stealing technique.

A. Stealing Within a Threadblock

The work stealing procedure is inserted at line 9 of Fig. 3. Before a warp breaks out of the loop, it checks the stacks of other warps in the same threadblock and selects the one with the most remaining work. The selection procedure is
shown in Algorithm 2. Starting from level zero, we check the stack level-by-level (line 4). Since the actual remaining work on a warp is unknown, we estimate it as the number of unexplored nodes at each level on the stack (line 7), and we assume that a warp with more unexplored nodes at a smaller level has more remaining work. Once we find a warp with at least one unexplored node at level l (line 8), we store its index to target_idx and the number of unexplored nodes to target_left_task. The procedure scans all the warps in the threadblock (line 5). If it later finds another warp that has more unexplored nodes at the same level, it updates the target warp (line 8-11). The selection procedure returns as soon as it finds a target at a certain level (line 12-13). If it cannot find a target after checking all levels, the procedure returns −1 (line 14).

After the idle warp finds a target warp, it divides the remaining tasks in the target warp and copies half of them to its own stack. The procedure is illustrated in Fig. 5. Suppose we want to match the query graph of Fig. 2 to the data graph in Fig. 4. As shown in Fig. 5, the target warp has node 0 and 1 at level zero and has matched node 1 to u0; it has no work left at level zero. The four neighbors of node 1 (i.e., node 0,2,3,4) are stored in the second level of the stack, and they are the candidates for u1. Suppose the warp has processed node 0 at level one and is processing node 2; it has two remaining nodes: 3 and 4. We split the two nodes. Node 3 is kept in the target warp, and node 4 is migrated to the stealer warp. Csize[1] of the target warp is changed to 3 since one node in C[1] has been migrated to the stealer. The stealer copies the matching nodes from the target to its own stack from level zero to target_level − 1. The Csize are all set 1 and the iter are all set to zero for these levels. In this example, target_level is one, so we copy the matching node at level zero of the target (which is node 1) and set Csize[0] of the stealer to 1. For target_level, we copy the stolen nodes (node 4 in this case) from the target to the stealer and set C[target_level] to be the number of stolen nodes. This completes the setup of both the target and the stealer stack.

Note that during the stealing process we need to lock the target and the stealer stack to ensure consistency. This is achieved by allocating a mutex lock for every warp (on shared memory). We also need to add a lock function at line 6 and an unlock function at line 9 and 16 in the while-loop of Fig. 3. The lock and unlock function are implemented with the CUDA atomicCAS and atomicExch instruction. The lock instructions themselves incur little overhead to the program since the mutex can be allocated in shared memory. The most expensive part of the stealing procedure is the copying of candidate nodes stored in global memory. Because of the overhead, we want to avoid stealing when there is not enough work left in the target warp. This can be achieved by adjusting the StopLevel at line 4 of Algorithm 2.

B. Stealing Across ThreadBlocks

If a warp cannot find a target to steal in the same threadblock, it goes to other threadblocks. However, this cannot be done in the same way as stealing within a threadblock. Since the stack of each warp is allocated in shared memory, a warp does not have direct access to warps in a different threadblock. We cannot let a warp check the stacks of warps in a different threadblock and pull tasks from a target. Instead, we have to let the target warp detect an idle warp and push tasks to it. The procedure is illustrated in Fig. 6. We maintain two arrays of NB elements in global memory where NB is the total number of threadblocks. Each element in the is_idle array is a bitmap indicating idle status of warps in the threadblock. Each slot of the global_stks array stores the tasks that the stealer receives from a target. When a warp fails to steal from warps in the same threadblock, ① it marks itself as idle in the is_idle array and ② spins wait on the idle status. During the matching process, a warp checks the status of other warps periodically. This is achieved by adding a steal_across_block function between line 6 and line 7 in Fig. 3. Every time a warp enters a level, it checks if it has unexplored nodes in the previous levels. To make sure the workload is large enough to justify the stealing overhead, we call this function only when the level is smaller than DetectLevel (which is a configurable parameter in our system). If the warp has unexplored nodes in the previous levels, ③ it scans the is_idle array to see if there is a threadblock where all the warps are marked idle. If it finds an idle threadblock, ④ it divides and copies its tasks to the global_stk of that threadblock. The divide-and-copy
Fig. 7: An unrolled version of the loop in Fig. 3.

Fig. 8: Perform multiple set operations in one warp.
(a) Set dependence graph

(b) A compact storage

Row_ptr: set_ops:(1,x,x)(0,0,0)(0,1,0)(0,1,2)
(first_operand, intersect/difference, depends_on)

\(C_! \ cap \ C_" \ cap \ C_! \ cap \ C_# \)

\(N(v!) \ cap N(v!), N(v") \)

\(C_! \ cap \ C_" \ cap \ C_! \ cap \ C_# \)

\(\text{Fig. 9: The set dependence graph for unlabeled query of Fig. 2.} \)

\((a) \) Separate label sets

\((b) \) Merged label sets

\(N(v!) \ cap N(v!), N(v") \)

\(C_! \ cap \ C_" \ cap \ C_! \ cap \ C_# \)

\(\text{Fig. 10: The set dependence graph for labeled query of Fig. 2.} \)

\(\text{We also need to copy uiter from level zero to target_level.} \)

\(\text{VII. REDUCING REDUNDANCY WITH LOOP-IN Variant CODE MOTION} \)

To show that our system is compatible with the existing optimizations for backtracking-based graph pattern matching, we implement the code motion technique proposed in [16] in our system. The idea is to lift the loop-invariant part of the set operations to upper levels so that they will not be computed repeatedly. For example, the \(N(v_0) \ cap N(v_1) \) operation at line 10 of Fig. 1 can be moved outside of the loop at line 8. We can store the result of \(N(v_0) \ cap N(v_1) \) and use the cached result for every iteration of the inner loop.

While it is straightforward to apply code motion to the nested loop in Fig. 1, it is nontrivial to incorporate this optimization into the existing subgraph-centric systems on GPU. In these systems, because the computation is driven by the subgraphs, the set operation is associated with each individual subgraph and the hierarchy of the set operations is lost. It is not obvious how to identify the loop-invariant operations and lift them for a batch of subgraphs. Although the hierarchy of set operations can be recovered from the subgraphs, maintaining a data structure to store the information is expensive.

Since our stack-based implementation is a direct simulation of the original nested loop, our system can be easily extended to support code motion. To perform the lifted set operations, we need to maintain more than one sets for each level in the stack. Therefore, we change the first dimension of \(C \) and \(Csize \) from \(PAT_SIZE \) to the total number of sets of all levels. We also need to change the set operations in the \text{getCandidates} function to compute and use the results of the lifted operations. As an example, Fig. 9a shows the sets in the loop of Fig. 1 after code motion. In addition to the candidate sets \((C_0 \ sim C_4) \), we store an intermediate set \(C_21 \) for \(N(v_0) \ cap N(v_1) \). The arrows indicate the dependence among the sets: \(C_1 \) is used for computing \(C_2 \) and \(C_21 \), and \(C_21 \) is used for computing \(C_3 \). For any query graph, we can obtain such a dependence graph with a simple code motion analysis [16].

To pass set dependence information to \text{getCandidates} function efficiently, we propose a compact storage of the dependence graph as shown in Fig. 9b. The row_ptr array indicates the starting position of the sets in each level, and the set_ops array stores the set operations for each set. The set operation is represented with three numbers. The first number indicates whether the set operation has \(N(v_{l-1}) \) as the first operand at level \(l \). In this example, \(C_1 \) has \(N(v_0) \) as the first operand in the first element of set_ops is 1. If the first number is 0, the set operation has \(N(v_{l-1}) \) as the second operand. The second number in set_op indicates whether the set operation is intersection or difference. For \(C_2 \), we need to compute \(C_1 \ cap N(v_1) \), so we have 0 as the second number. For \(C_21 \), we need to compute \(C_1 \ cap N(v_1) \), so we have 1 as the second number. The third number is the index of the set that the current set depends on. The two arrays take only tens of bytes and are stored in shared memory. The \text{getCandidates} function reads in the two arrays and performs set operations accordingly at each level.

One limitation of the original code motion technique in [16] is that it needs to store multiple intermediate sets for different labels. To see this point, let us consider again the matching of query graph of Fig. 2. Suppose we restrict \(u_1 \) to label 'a', \(u_2 \) to label 'b', and \(u_3 \) to label 'c'. The dependence graph in Fig. 9a will not work – if \(C_1 \) only stores nodes of label 'a', we cannot have nodes of label 'b' in \(C_2 \). To fix this problem, [16] separates the candidate sets from the intermediate sets and stores nodes of different labels in different sets, as shown in Fig. 10a. If a set of label 'x' is dependent on a set in the previous level, they add an intermediate set of label 'x'. The labels are propagated from the bottom to the top level. The total number of sets is at least \(n(n-1)/2 \) where \(n \) is the number of nodes in the query graph. While this is not a problem on CPU, it may cause shared memory overflow in our system as we store \(Csize \) for all the sets of all unrolled iterations in shared memory. To reduce the usage of shared memory, we merge the intermediate sets of different labels that are split from the same unlabeled set into one set with multiple labels. For example, \(C_{12} \) and \(C_{13} \) in Fig. 10a can be merged into one set with label '2,3', as shown in Fig. 10b. The larger the query graph, the more sets we save with this method. This enables us to support larger query graphs without affecting the efficiency.

For work stealing, the candidate sets are divided and copied in the same way as in Fig. 5. We also copy all the intermediate sets that are used by sets after target_level so that they need not be computed again by the stealer.
Table I: Graph datasets.

VIII. Experimental Results

In this section, we compare our system with two state-of-the-art GPU graph pattern matching systems: cuTS [30] and GSI [32], and a state-of-the-art CPU system: Dryadic [16]. GSI achieves consistently better (or equal) performance than many previous CPU and GPU implementations such as CFL-GSI [3], CBWJ [18], VF3 [4], GPSM [25] and Gunrock [28]. CuTS has shown even better performance than GSI. However, because cuTS does not support labeled queries, we also compare with GSI for labeled matching tasks.

A. Experimental Setup

Platform: Our experiments are conducted on a dual-socket machine with four Nvidia RTX3090 GPUs, two Intel Xeon Gold 6226R 2.9GHz CPUs (32 cores in total), and 512GB RAM. We use GCC9.4.0 and NVCC11.2 with O2 level optimization to compile the code.

Datasets and query graphs: Table I lists the data graphs used in our experiments. These graphs are obtained from the SNAP [14] repository and are commonly used for evaluating graph pattern matching systems. For query graphs, we adopt the queries from cuTS. CuTS uses directed query graphs. The 33 directed queries used in their experiments actually have only six undirected patterns. While our system supports both directed and undirected graphs, we use undirected graphs in our evaluation because it is a more common setup in the graph pattern matching literature [3], [16], [25], [32], [33]. The 33 queries in cuTS experiments are covered by q_7, q_8, q_{15}, q_{16}, q_{23}, q_{24} in our system, among which q_8, q_{16} and q_{24} are cliques (i.e., fully connected graphs). Then, we randomly select six query graphs from size-5, size-6, size-7 motifs, respectively. In total, we test with 24 distinct query graphs: $q_1 \sim q_6$ of size-5, $q_9 \sim q_{16}$ of size-6, and $q_{17} \sim q_{24}$ of size-7. Our system supports both labeled and unlabeled graphs. To evaluate the performance of labeled matching, we follow the setup in Dryadic [16] and randomly assign ten labels to the data and query graphs. For fairness, we use the same matching order of query nodes (adopted from Dryadic) for all systems.

Settings: In all experiments, we set the **StopLevel** in Algorithm 2 to 2, and the **DetectLevel** for global work-stealing in Section V-B to 1. The unrolling size is set to 8. We set the **MAX_DEGREE** of array C to 4096. The size of array C is $\text{NUM SETS} \times \text{UNROLL} \times \text{MAX DEGREE} \times \text{NUM WARP}$. For queries of no more than seven nodes, we have $\text{NUM SETS} \leq 15$ (this number is determined by the code motion analysis). The maximum number of active warps on our GPU is $82 \times 32 = 2624$. Thus, besides the storage of data graph, our system consumes a fixed 4.8GB GPU memory for queries of up to seven nodes. For graphs whose max degrees are larger than 4096, we store the extra nodes in the sets with more than 4096 nodes on CPU. Because real-world graphs are skewed and few nodes have degrees greater than 4096 (last column in Table I), it is very rare for the program to access CPU memory. We run cuTS and GSI with the same number of total warps on GPU, and run Dryadic with 64 threads on CPU.

B. Overall Performance

GSI and cuTS are subgraph isomorphism systems: they obtain edge-induced subgraphs that are isomorphic to the query graph. Thus, we configure our system and Dryadic to run edge-induced matching (by removing the set difference operations) and compare with the two systems. Table II(a) lists the execution time of unlabeled edge-induced queries on a single GPU. We do not list the execution time of GSI in this table because it either aborts or is dominated by cuTS. We can see that Dryadic consistently outperforms cuTS, while our system outperforms both Dryadic and cuTS for all testcases. Compared with cuTS, our system achieves up to 3385x speedups with an average of 694x. Compared with Dryadic, our system achieves up to 52x speedups with an average of 11x.

Table III lists the execution time of labeled edge-induced queries on a single GPU. Our system shows consistently better performance than the other two systems. It achieves 24x to 991x speedups against GSI, and 1.4x to 898x speedups against Dryadic. The speedups are more significant on larger data graphs. The average speedup against GSI is 67x, 89x and 306x for WikiVote, Enron and YouTube, respectively. The average speedup against Dryadic grows from 6x to 56x for different graphs. The results indicate that our system scales better on large graphs compared to GSI and Dryadic.

We also compare with Dryadic for vertex-induced matching. For q_8, q_{16} and q_{24} which are cliques, vertex-induced matching is the same as edge-induced. The execution time of unlabeled queries is shown in Table II(b). Our system outperforms Dryadic for all testcases with a maximum speedup of 30x and an average speedup of 6x.

Our system can be easily run on multiple GPUs by duplicating the input graph and dividing the outermost loop iterations (i.e., V in Fig. 4) across GPUs. Fig. 11 shows the speedups of running labeled and unlabeled $q_9 \sim q_{16}$ on LiveJournal, Orkut and MiCo with two and four GPUs. Our system can also be extended to run on distributed GPU clusters with slight changes in the work-stealing procedure to take the communication cost across machines into consideration.

C. Benefits of Proposed Techniques

To show the effectiveness of our work-stealing and loop unrolling techniques, we perform an ablation study on our system. We first run a naive version without work-stealing and loop unrolling. Then, we allow the warps to steal workloads...
...to out-of-memory. ‘×’ indicates timeout after 8 hours. CuTS only supports edge-induced matching. It fails for all queries on MiCo.

from other warps within the threadblock (localsteal) and across threadblocks (local+globalsteal). Last, we unroll the loops and make each warp perform multiple set operations simultaneously (unroll+local+globalsteal).

Fig. 12 shows the execution time of different versions for labeled size-6 queries on different graphs. We can see that local work-stealing brings the most benefit to our system, achieving more than 2x speedups for almost all testcases. Global work-stealing further improves the performance on MiCo and LiveJournal where the workload is large enough to justify the overhead of copying stacks among threadblocks. It achieves 1.3x to 2.0x speedups on top of local+globalsteal on MiCo graph and 1.1x to 1.9x speedups on LiveJournal. Compared to naive version, work-stealing and loop unrolling together achieve up to 12x speedups. All the versions above use code motion. If we disable code motion, the naive baseline will be about 3x slower.

IX. RELATED WORK

Graph pattern matching and its related problems have been extensively studied in the past decades. Numerous systems with different algorithms have been proposed. As we focus on parallelizing backtracking in this work, we give a summary of backtracking-based graph pattern matching systems.

CPU-based systems: The study of subgraph isomorphism problem dates back to 1970s. Ullmann [27] proposes the first backtracking algorithm that iteratively matches query nodes on data graph based on a certain order. Many studies follow...
TABLE III: Execution time (in milliseconds) of different systems for labeled edge-induced matching. GSI fails for all queries on MiCo, LiveJournal, Orkut and Friendster.

<table>
<thead>
<tr>
<th></th>
<th>WikiVote</th>
<th>Enron</th>
<th>YouTube</th>
<th>MiCo</th>
<th>LiveJournal</th>
<th>Orkut</th>
<th>Friendster</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q2</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>q3</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q4</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q5</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q6</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q7</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q8</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q9</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q10</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q11</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q12</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q13</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q14</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q15</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>q16</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Fig. 12: Speedups of labeled size-6 queries with and without work-stealing and loop unrolling.

Fig. 13: Thread utilization with different unrolling sizes.

this seminal work and propose different strategies to optimize the matching order [5], [18], [22], [33]. They show that a good matching order can significantly reduce the exploration space and accelerate the matching process. Some recent work show that a dynamic matching order based on the local topology and label distribution of the data graph can further reduce the exploration space [3], [8], [9], [13]. A more recent work, Dryadic [16], proposes to search for an optimal static matching order and optimize the computation tree instead of input adaptation. It achieves state-of-the-art performance on CPU compared with the earlier systems. Since matching order is not the focus of this work, we simply adopt the matching order of Dryadic in our system. However, our system can be extended with any of the previous matching order strategies.

GPU-based systems: There are a number of GPU systems for subgraph isomorphism. All of them are subgraph-centric. Some systems [25], [28], [32] adopt a breadth-first extension order that favors GPU architecture. They store all partial subgraphs of a certain size before exploring larger subgraphs. Due to the large intermediate exploration space, the partial subgraphs can easily exceed the GPU memory limit. To reduce...
the memory consumption, some other works adopt a hybrid DFS and BFS extension order [15], [30]. Given a memory capacity, they pre-allocate a portion of memory for each level. To generate the partial subgraphs for next level, they take a set of partial subgraphs at current level that are estimated to fit into the pre-allocated memory. The procedure is repeated for each level until all matching subgraphs are found. CuTS [30] proposes a compact trie-based data structure to further reduce the size of intermediate subgraphs. It reportedly achieves the state-of-the-art performance on GPU compared with earlier systems. Previous work has also considered exploiting multiple GPUs to accelerate pattern matching on large graphs [7], [30].

PBE [7] proposes a matching algorithm on partitioned graphs so that each GPU only holds a portion of the data graph.

Distributed systems: Graph pattern matching has also been studied on distributed systems [2], [11], [12], [21], [23], [29], [31]. The main challenge is to balance the workload among machines. CECI [2] proposes a compact embedding cluster index to divide the data graph into multiple embedding clusters for parallel processing. They design a proactive workload balancing strategy with a search cardinality based cost function. RADS [21] proposes a region-grouped multi-round expand technique to reduce communication and minimize intermediate result storage. BENU [29] proposes a task splitting technique based on node degree to optimize the load balance among machines. GraphPi [23] uses a communication thread to maintain a task queue on each machine and steal work from other machines when its task is smaller than a threshold.

X. Conclusion

In this work, we study the parallelization of backtracking-based graph pattern matching on GPU. We propose a stack-based implementation that avoids the synchronization and memory consumption issues of previous systems. We also show that the performance of our system can be improved by applying a series of loop optimizations. The experiments show that our system significantly outperforms the state-of-the-art solutions.

Acknowledgements

This work was supported by NSF award CCF-2028825. The authors thank Bo Wu and Han Wei from Colorado School of Mines for helpful discussions and sharing the code of Dryadic.

References

