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Abstract
A finite-state machine (FSM) is a key component for many
important applications, such as Huffman decoding, regular
expression matching and HTML tokenization. Due to its
inherent dependencies and unpredictable memory access
pattern, FSM computations are considered to be extremely
difficult to parallelize. As such, significant research efforts
have been made to accelerate FSM computations. Although
they achieve promising performance results on multi-core
machines, these methods are not scalable for emergingmany-
core architectures such as the GPUs.
Based on our experiments, we point out that the bottle-

neck of achieving scalability on GPUs is the sequential merge
inherent to these methods. However, unlike the case for
simple reduction loops, parallel merge implementations for
FSM computations typically require runtime checks and re-
executions, which can also impede performance. Based on
these observations, we develop parallel merge techniques
that select efficient runtime check implementations and avoids
unnecessary re-executions. Further, based on GPU architec-
tural features, we develop optimization techniques to im-
prove performance.

We evaluate our parallel merge implementations on a set
of representative algorithms. Experimental results show that
our parallel merge implementations are 2.02-6.74 times more
efficient than corresponding sequential merge implementa-
tions and achieve better scalability on an Nvidia V100 GPU.

CCS Concepts • Software and its engineering → Mas-
sively parallel systems; • Theory of computation →
Parallel computing models;
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1 Introduction
FSM, as a classical computation model, has been used as a
key component in several important applications such as
those from data analytics and data mining [5, 7, 19, 20, 26],
network security [6, 32], regular expression matching [1],
data decoding [12, 25], and others. Figure 1a shows an ex-
ample FSM, which can be used to identify C-style comments
in source code delineated by /* and */. Here, x denotes any
character other than / and *. Figure 1b illustrates the corre-
sponding transition table, which determines the transitions
from each combination of current state and the input sym-
bol. Figure 1c shows a simple serial implementation of FSM
computations.
In several applications, FSMs are executed on very large

input datasets and yet require very rapid response. For ex-
ample, Snort [24] is a network intrusion prevention and
detection system based on regular expression matching. It
needs to process large numbers of network packets to detect
suspicious activities or attacks in a short amount of time.
However, FSMs are known to be extremely challenging to
parallelize and are also referred to as embarrassingly sequen-
tial computations [1]. This is because there is a clear depen-
dence between successive loop-iterations. Acceleration of
FSM computations is therefore challenging and has attracted
significant attention [10, 18, 22, 23, 34, 35]. To parallelize
FSMs, previous research efforts [23, 34, 35] have proposed
speculative execution – this method speculates a state for each
chunk and processes chunks in parallel. Once this process
is finished, we check whether the speculated state for each
chunk was correct. If not, the corresponding chunk will be
reprocessed. A significant drawback of this method is that
the speculation success rate might be low in many cases,
and thus the cost of reprocessing might be high. An alterna-
tive is enumerative execution [18, 19], where each chunk is
processed starting with all the states. Clearly, this approach
introduces redundant computations for each chunk, and
when the number of states is large, this overhead can be very
large. A hybrid method enumerative speculation has been
proposed recently [10], which processes each chunk with
several (but not all) speculated states.
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(a)

(b) (c)

Figure 1. An FSM that accepts C style comments in source
code delineated by /* and */ (Taken from [18])

Overall, the existing parallelizationmethods have achieved
promising success onmulti-coremachines where the number
of threads/cores is relatively modest. However, scaling FSMs
on an architecture like GPUs is still a challenging problem.
In fact, existing research work [23] has shown that specu-
lative execution cannot scale with many-core CPUs such as
a Xeon Phi. The proposed solution in this work [23] has
been to only exploit a limited number of cores based on a
systematic scalability analysis. Although this approach can
achieve significant speedups and even reduce the wasteful
use of hardware resources, the question remains whether
FSMs can be made to continue to scale with an increasing
number of cores.

In this work, we first generalize existing solutions to paral-
lelize FSMs as a spec-kmethod – Here, k denotes the number
of speculated states. When k is 1, the method becomes spec-
ulative execution, whereas when k is equal to the total num-
ber of states (N ), it becomes the enumerative method. Other
values of k denote ordinary enumerative speculation. We
demonstrate that scaling general spec-k methods on GPUs
remains challenging. Particularly, with both speculative and
enumerative speculation methods, the dominant cost is to
merge the states after parallel executions of chunks. The rea-
son is that the default implementation of a merge, which is
the sequential merge, can have a very large overhead when
the number of cores is large. This leads to the choice of per-
forming a parallel or tree-likemerge. However, when specula-
tions are involved, such a parallel merge is non-trivial. Thus,
a major contribution of this paper is that we implement a
code generator, which can generate efficient parallel merge
implementations on GPUs. As far as we know, this is the
first work that supports parallel merge with speculations on
GPUs. In addition, our code generator explores several key
design choices. Finally, we develop effective optimizations
to further improve performance of FSM computations on
GPUs. Specifically, as a major overhead of FSM computations
is the unpredictable and random accesses to the transition
table, we cache hot entries of the transition table into shared

Table 1. Key terms of FSM computations and their meanings
in this work

Terms Meaning
num_states (N ) number of states for an FSM
num_guess (k) number of speculated states for each chunk
num_inputs number of different kinds of input symbols
num_item number of data items for the input

num_thread (n) number of parallel threads

memory. Thus, we effectively exploit shared memory even
when the transition table is large.

We evaluate our methods on a set of representative ap-
plications: Huffman decoding, regular expression matching,
HTML tokenization, and Div7. The main observations from
our experiments are as follows. Our parallel merge imple-
mentations continues to scale out when we use all cores
of the GPU while the performance typically drops under
sequential merge implementations, with speedups over se-
quential CPU execution ranging from 60.44 to 208.69, 2.02-
6.74x faster over sequential merge implementations. Also,
our optimizations based on GPU architectures are effective:
with layout transformations on the input data, our parallel
merge implementations achieve an average speedup of 3.79,
and caching of hot entries in the transition table leads to a
nearly a 50% speedup for Hoffman decoding.

2 Background and Motivation
In this section, we first summarize previous research efforts
on parallelizing FSM computations. Then we briefly discuss
GPU architectural features that are important for our imple-
mentation. Finally, we point out the drawbacks of existing
methods through an experimental study and motivate our
work.

2.1 Parallelization Strategies for FSM Computations
FSMs can be deterministic or non-deterministic depending
on if a condition can lead to a unique following state. In
this paper, we focus on deterministic FSMs (DFA) because
non-deterministic FSM (NFA) can be converted to determin-
istic ones through subset construction. In the following, we
will use terms FSM and DFA interchangeably. A finite-state
machine (FSM) can be represented as a tuple (Q, Σ,q0,δ , F ),
in which Q is a finite set of states, Σ is a finite set of input
symbols called the alphabet, δ is a transition function that
maps a state and an input symbol to another state, q0 ∈ Q is
the initial state and F is a set of accepting states. To make our
discussions clear, Table 1 shows key terms related to FSM
computations.
To overcome the inherent sequential characteristics of

FSM computations, speculative execution was proposed to
break the dependencies between state transitions. In this
method, the input data is divided into chunks. While one
thread is working through a chunk, another thread can start
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(a) An example of speculative execution

(b) An example of enumerative execution

(c) An example of enumerative speculation

Figure 2. Illustration of three different parallelization meth-
ods: speculation, enumerative and enumerative speculation

computing on the next chunk from what is referred to as
a speculated state. Figure 2a shows an example of specula-
tive computation (using the FSM in Figure 1). The input
data is partitioned into two chunks and they are processed
in parallel. Chunk 0 starts with the true initial state while
chunk 1 starts with a speculated state. A typical strategy
to improve the speculation success rate is called look-back
[21, 34, 35], which means looking back characters at the
end of the previous chunk. and speculating state based on
this information. In this case, the last character of chunk 0
is x. By looking into the transition table, we know only a
and c are possible states after a transition using |em x. Here,
we use state a as the speculated state for chunk 1. After
chunk 0 and chunk 1 finish the local processing, speculative
method finds that state a was the wrong guess – as a result,
it re-executes chunk 1 with the correct state c. If the spec-
ulation happened to be correct, speculation method could
have actually achieved (close to) linear speedup. Through
this simple example, we can observe that the performance
of speculation method depends heavily on the speculation
success rate. When the speculation success rate is low, this
method will not be efficient.
An alternative method to parallelize FSM computations

is enumerative execution [18]. In enumerative execution, in-
stead of starting with a speculated state, we compute a chunk

starting with all stats of a FSM. Figure 2b shows an example
of enumerative computation of the FSM in Figure 1. In this
case, chunk 1 starts computations with all states. Once the
computation on chunk 0 has finished, we pick the version of
the enumerative computation that started from the correct
state, which in this case is the one that started with the state
c. An obvious drawback is that it can cause a large amount
of redundant work.
As illustrated above, both the speculative and enumer-

ative execution have their limitations. This motivated the
design of an enumerative speculation method [10]. Instead
of speculating only a single state like speculative method or
enumerating all states as in enumerative execution, they pro-
posed to speculate several possible states. Figure 2c shows
the example of enumerative speculation with the FSM in
Figure 1. By looking back at the last character, enumerative
speculation uses both state a and state c as two speculated
states for chunk 1. After chunk 0 finishes the local process-
ing, enumerative execution method finds that state c is the
correct initial state and gets the final result. Compared with
speculation method, enumerative execution may achieve a
higher speculation success rate with more speculated states
and thus a lower reprocessing overhead. On the other hand,
enumerative speculation reduces the redundant computation
overhead since the number of speculated states is typically
much smaller than the total number of states. As a result,
[10] demonstrated that enumerative speculation can outper-
form both speculative execution and enumerative execution
for a variety of applications.
In this work, we generalize all existing parallelization

strategies as spec-k method. Here, k is num_guess as also
shown in Table 1. Now, speculative execution is a special
case in which k is equal to 1 and enumerative execution is
when k is equal to the number of states, N .

2.2 GPU Architectures
From the viewpoint of software, there are three parallelism
levels on GPUs. 1 The first level is called warps, which are
consecutive 32 threads that execute instructions in a lockstep.
Threads within a warp can exchange register variables using
efficient shuffle instructions. The second level is thread blocks.
Each thread block can hold up to 1024 threads and is assigned
to one of the GPU’s multiprocessor units, which are called
the SMs. Threads within the same thread block are allowed
to access shared memory, which is much more efficient than
accessing the global memory of the GPU, but still slower
than shuffle instructions that threads within a warp can use.
Besides, CUDA provides efficient instructions to implement
barriers among all threads within a thread block. Finally, the
third level of parallelism is the grid. Threads from different
thread blocks within a grid can only communicate through
global memory, which is relatively slow. If all threads within

1In this paper, we use terms specific to the CUDA programming model.
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Figure 3. Speedups with different numbers of thread blocks
on an Nvidia Tesla V100 for regular expression 2. The base-
line is a single-thread CPU program.

a warp simultaneously access global memory locations that
lie in the same aligned 128-byte segment, the hardware coa-
lesces them into one memory transaction. Otherwise, threads
within a warp access multiple 128-byte segments and global
memory bandwidth is not fully utilized. In addition, there is
no grid-wide barrier among threads of the same grid, so pro-
grammers need to implement global barriers by themselves
[8, 30].

2.3 Motivation and Opportunities
As also mentioned in the previous section, [23] pointed
out the scalability problem of speculative execution (spec-1
method) on Xeon Phi. In this section, we demonstrate that
this scalability issue is general for spec-k methods, i.e, exists
for other values of k also. We performed an experiment with
a regular expression matching FSM on an Nvidia Tesla V100.
The regular expression used is "(.+, . + \.)4|(.+, )4|(. + \.)4",
which is also shown as Regular Expression 2 in Table 3.

Figure 3 compares the speedups with different numbers
of thread blocks on an Nvidia Tesla V100 over a sequential
implementation on a CPU. Better performance is seen with a
smaller value of k (such as 4 in this case) since the overhead
of redundant work is lower. However, the scalability is lim-
ited irrespective of the value of k . The limit of scalability is
the merge step, where results from different threads are com-
bined. This merge step processes results from each thread
sequentially, and with a large number of threads, easily be-
comes the bottleneck. Unlike the previous work [23] where
the conclusion was to only exploit a limited number of cores,
we propose to solve the scalability problem by design of an
optimized (and correct) parallel merge.

3 Achieving Scalability with Parallel
Merge

We have shown that sequential merge can be a performance
bottleneck for the parallelization of FSM computations. To

overcome this bottleneck, a solution is to perform a paral-
lel tree-like merge, which is routinely used for reduction-
like parallel algorithms [3, 29]. However, unlike simple re-
ductions, it is challenging to support parallel merge when
speculation is involved. In this section, we first explain the
correctness and performance issues with parallel merge im-
plementation for FSM computations. Then, based on our
observations, we present key design ideas that enable scala-
bility with parallel merge.

3.1 Overview of Parallel Merge for FSM
Computations

Consider the execution of the FSM in Figure 1. As indicated
in the figure, the input to the FSM computations is /∗xxx ∗∗/.
We assume that the input data is divided into four chunks
and assigned to four threads. For each chunk, it speculates
two states, i.e, it adopts the spec-2 method. After the local
parallel processing stage, each chunk gets two corresponding
ending states. In Figure 4, speculated states and ending states
are shown as two columns under each chunk. Figure 4a
illustrates the procedure of sequential merge. As also shown
in the figure, the initial state is state a. At each step, a single
true state from the previous chunk is compared against each
speculated state of the next chunk. If there is a match, we
update the true state as the corresponding ending state of
the next chunk. Otherwise, we re-execute the next chunk
with the true state.

Next, we describe the parallel merge procedure for the
same example. In the first step, it merges results for the com-
bination of chunk 0 and chunk 1, at the same time, it merges
the combination of chunk 2 and chunk 3. Then, it merges
these two results to get a final result for all four chunks. This
clearly saves time as compared to sequential merge, espe-
cially as the number of threads increases. Figure 4b shows
the procedure of the first step under a parallel merge. Since
we do not always know the true initial state in this step, for
each ending state we try to find a match with a speculated
state of the next chunk. To be more specific, when we merge
results of chunk 0 and chunk 1, two ending states are state
c and state d. For each ending state, we find a match from
the next chunk. Thus, the merge result is that for speculated
state a and speculated state c, the ending state for the com-
bination of chunk 0 and chunk 1 is the state c. However,
to merge results of chunk 2 and chunk 3, for both state a
and state d from chunk 2, we seek a matching speculated
state of the chunk 3. Unfortunately, we are not able to find
a match for the state a. As a result, to get merge results of
the combination of chunk 2 and chunk 3, thread 3 needs to
re-execute chunk 3 with state a.

From the above example, we can summarize the following
challenges when supporting the parallel merge with specula-
tions of FSM computations. First, under the sequential merge,
the runtime checks only involve a single true state that needs
to be compared against k speculated states for each step of
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(a) Procedure of Sequential merge for spec-2 method.

(b) Procedure of parallel merge for spec-2 method.

Figure 4. Illustration of issues with parallel merge on FSM computations

the merge. However, under the parallel merge with spec-
k, k ending states are involved – each of them needs to be
compared against each speculated state from the next chunk.
Therefore, the complexity of runtime checks increases from
O(k) to O(k2). Second and more importantly, under the se-
quential merge, each chunk gets a true initial state from the
previous one and then performs runtime checks (and possi-
ble re-executions). If a re-execution is performed, it is indeed
necessary. On the other hand, under the parallel merge, since
we start to merge without knowing the true initial state, we
try to match each ending state against a speculated state
from the next chunk. If its match is not found, there may be
a need to re-execute. However, since these re-executions are
not based on the true initial state, they might be unneces-
sary. For example, in Figure 4, re-executions on chunk 3 is
unnecessary because state a is not the true initial state for
chunk 2. Such unnecessary re-executions can significantly
degrade performance, especially as both k and the number
of threads increases.
To address the above two challenges, we propose two

implementation methods in Section 3.2, which are the nested
loop and hash implementations. In addition, we propose our
re-execution strategy that avoids unnecessary re-executions.

3.2 Implementations of Runtime Checks
As illustrated above, with spec-k method, each chunk ends
up with k ending states. To merge results among different
chunks, we need to compare these ending states against k
speculated states of the next chunk. These runtime checks

Algorithm 1 Procedure of nested loop implementation for
runtime checks
1: ▷ states are ending states of the current chunk
2: ▷ init_states are speculated states from next chunk
3: ▷ next_states are ending states from next chunk
4: for s = 0; s < num_guess; s++ do
5: target_state = states[s]
6: found = 0
7: for i = 0; i < num_guess;i++ do
8: sus_state = init_states[i]
9: if sus_state == target_state then
10: found = 1
11: break
12: end if
13: end for
14: if found == 0 then
15: Re-execute the next chunk with states[s]
16: else
17: state[s] = next_states[i]
18: end if
19: end for

are similar to semi-join operations [2] in databases. Similar to
a semi-join implementation, we use a nested loop for these
runtime checks, as shown as Algorithm 1. Here, array states
stores ending states of the current chunk, whereas the arrays
init_states and next_states record speculated and ending
states, respectively, from the next chunk. First, we load each
ending state of the current chunk as tarдet_state . Then we
compare tarдet_state with each speculated state from the
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Algorithm 2 Procedure of hash implementation for runtime
checks
1: ▷ states are ending states of the current chunk
2: ▷ init_states are speculated states from next chunk
3: ▷ next_states are ending states from next chunk
4: ▷ bucket_size records the size of each bucket
5: ▷ HASH_SIZE is a predefined parameter
6: ▷ Step 1: Establish the hash table
7: for s = 0; s < num_guess; s++ do
8: hash_index = init_states[s] % HASH_SIZE
9: hash_init_states[hash_index][bucket_size[hash_index]] =

init_states[s]
10: hash_end_states[hash_index][bucket_size[hash_index]] =

next_states[s]
11: bucket_size[hash_index]++
12: end for
13: ▷ Step 2: Probe the established hash table
14: for s = 0; s < num_guess; s++ do
15: found = 0
16: target_state = states[s]
17: hash_index = target_state % HASH_SIZE
18: item_cnt = bucket_size[hash_index]
19: for i = 0; i < item_cnt;i++ do
20: if hash_init_states[hash_index][i] == target_state then
21: found = 1
22: break
23: end if
24: end for
25: if f ound == 0 then
26: Re-execute the next chunk with states[s]
27: else
28: states[s] = hash_end_states[hash_index][i]
29: end if
30: end for

next chunk, which is loaded as sus_state . Once we find that
there is a match between tarдet_state and sus_state , we can
update an ending state states[s] as next_states[i] for these
two chunks in line 17. Otherwise, we need to re-execute the
next chunk with states[s].

Since the complexity of this algorithm is high (O(k2)), we
also implemented a hash version, shown as Algorithm 2.
The procedure can be divided into two steps: The first step
establishes a hash_table on the ending states from the next
chunk, which is shown in lines 7-12. In the second step, for
each ending state states[s] of the current chunk, we probe
the previously established hash table and try to find a match
(lines 14-28). Although hash implementation reduces the
time complexity to O(k), the access pattern of these arrays
is dynamic. As a result, accessing these arrays will be spilled
into local memory, which might hinder performance. Thus,
our code generator adopts hash implementation only when
num_guess (k) is large. 2

2Based on empirical observations, we use hash implementation when
num_guess is larger than 12.

3.3 Re-execution Strategy
To avoid unnecessary re-executions, we propose to delay
re-executions with the following method. If we are not able
to find a match for an ending state of the current chunk, we
mark that the corresponding speculated state of the next
chunk is invalid rather than re-execute the next chunk. To
be more specific, consider the example in Figure 4. At the
end of the first step of merge, we are unable to find a match
for state a from chunk 3. In this case, instead of re-executing
chunk 3 with state a, we just mark that speculated state a of
chunk 2 is invalid. Therefore, the merged results of chunk 0
and chunk 1 are: For initial state a, the ending state is state c;
for state c, the corresponding ending state is state c. On the
other hand, the merged results of chunk 2 and chunk 3 are:
For speculated state c , the ending state is state d. However,
for speculated state a, the merge is invalid. Then, in the
second step of the merge, we try to merge the results for all
these four chunks. For both speculated state a and state c,
its ending state is state c, the ending state for the entire set
of four chunks is state a. As it is shown, the unnecessary re-
execution is avoided and the merged results are still correct.

4 Implementation and Optimizations
In this section, we discuss the implementation details of
parallel merge on GPUs and emphasize some of our key
design choices. We also describe a key optimization, which
is to cache hot parts of the transition table with the goal of
reducing memory access overheads.

4.1 Base implementation on GPUs
We first divide input data into chunks and assign one thread
to each chunk. Then, each thread processes a local chunk.
The procedure of local processing under the enumerative
speculation method is shown in Algorithm 3. Each thread
declares an array of speculated states as states[num_дuess]
and initializes this array based on a simple look-back strategy
[21]. Then, a thread starts local processing in a loop: at each
iteration, a thread reads an input item in and operates state
transitions for each speculated state. The ending states of
each chunk are recorded in states array. It should be noted
that our code generator determines the value of num_дuess
before it generates the kernel code. As such, num_дuess is
known at compilation time and access pattern of array states
is static, so array states can be loaded in the registers as long
as num_дuess is not large. After the local parallel process is
finished, the merge stage is executed with three sub-stages:
The first one is warp stage. We merge ending states of each
thread within a warp using a set of shuffle instructions. After
warp stage is finished, the last thread of a warp gets the
merge results of the entire warp and stores them in shared
memory. In the second step, which is block merge, we merge
results of a single thread block as follows. First, after a barrier
synchronization, each lane of the first warp loads merge

165



Scaling out Speculative Execution of FSMs with Parallel Merge PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 3 Procedure of the local processing stage under
the enumerative speculation method
1: ▷ Initialize speculated states
2: states[num_guess]
3: Set up values of array states based on simple look-back strategy
4: ▷ Local process
5: for index = 0; index < chunk_size; index ++s do
6: in = input[index]
7: #pragma unroll
8: for s = 0; s < num_guess; s++ do
9: states[s] = T[in][states[s]]
10: end for
11: end for

results of a warp into registers. As such, results of different
warps in this thread block are loaded into the first warp.
Then, the first warp merges results of different warps using
the same procedure as thewarp stage. Finally, we get the final
merge result among different chunks through the third step,
which is global merge. After another barrier synchronization,
a single thread of a thread block writes results of a thread
block into global memory. We adopt persistent threads [8]to
synchronize merge results between different thread blocks
to reduce synchronization overhead. Since the number of
thread blocks is typically small, we merge the results in a
sequential manner during this step.

Next, we briefly introduce two key implementation choices.
Input data transformation: In a naive implementation,
each thread sequentially accesses its own chunk, which is
stored in a continuous section of memory. Since the chunk
size is typically large, consecutive threads will access dis-
tant memory locations. As a result, memory accesses across
threads will not be coalesced. To overcome this problem,
we change the layout of the input data so that consecutive
threads access consecutive memory locations. Obviously,
such data layout transformation can have overheads. How-
ever, in many cases, algorithms will be executed over the
same data set many times. For example, network intrusion
detection systems (NIDS) typical check many different regu-
lar expressions for a single packet. In such scenarios, one can
justify offline input data transformation since the overhead
of data transformation is easily amortized by the benefits of
coalesced memory accesses.
Persistent-thread Model: On GPUs, programmers can de-
cide how many thread blocks to launch in a grid. However, it
is possible that only a subset of these blocks can be executed
concurrently on a GPU because of limitations of resources
such as the number of registers and the size of the shared
memory. When a thread block finishes, the hardware sched-
uler will choose another one to run until the entire grid
finishes. This causes several problems, for example, different
thread blocks cannot synchronize and exchange data with
each other. To avoid this, we adopt persistent-thread model
[8]. In persistent-thread model, we only launch as many

thread blocks as can be simultaneously active, and assign
multiple work items to each thread.

4.2 Reducing Overhead of Transition Table Memory
Accesses

A significant difficulty in optimizing FSM executions is that
thememory accesses on the transition table are data-dependent
and thus unpredictable. For GPU architectures, this indi-
cates that if we store the transition table in global memory,
memory accesses to the transition table are non-coalesced
and can become a performance bottleneck. To reduce the
overhead of random global memory accesses, we can load
a copy of the transition table into shared memory for each
thread block, i.e., the shared memory can be used as user-
managed cache for the transition table. However, the size of
shared memory per SM is very limited on GPUs. In Nvidia
Tesla V100, the available shared memory is no more than 96
KB per SM, much smaller than the global memory. On the
other side, the number of entries in the transition table is
num_states×num_inputs . If num_states and/or num_inputs
is large, shared memory is incapable of holding the entire
transition table. As a consequence, the non-coalesced global
memory access can significantly degrade performance.
The key observation to relieve the above problem is that

a small number of states typically occur with a relatively
high frequency in the computation of FSMs. To illustrate
this, we consider input I = print("hello world") /*test print*/
for the FSM shown in Figure 1. As we can see, in this ex-
ample, execution will stay in state a most of the time. To
verify this observation, we measured state frequencies of the
FSM computation for regular expression 1 as one example.
The setups of this application are illustrated in Section 5.
Figure 5 shows the cumulative distribution function (CDF)
when states are ordered in decreasing order of frequency. As
shown in Figure 5, there are 18 states in the DFA of regular
expression 1. However, the first 8 states account for around
95% of all transitions.

Based on this observation, we implemented a strategy to
cache the hot parts of the transition table in GPU shared
memory. For simplicity, we use a static scheme where the
allocation of states in sharedmemory does not change during
the execution. We count the frequency of each state in the
transition table – for example, in the transition table shown
in Figure 1b, the frequency of each of states a and c is 4
and the frequency of each of states b and d is 2. Thus, we
assume that state a and state c are hot states. The intuition
here is that with more cases where these states are accessed,
it is likely that the frequency of such states is high during
state transitions also. When the size of shared memory is
limited, we store entries starting with the highest frequency
states, till there is no more space in the shared memory. In
the case of Figure 1b, there are 12 entries in the transition
table. Assuming that the size of share memory is only 6, we
would store the first and the third row of the transition table
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Figure 5. State frequency distribution cdf for regular expres-
sion 1. The most frequent 8 states account for nearly 95% of
all transitions.

into shared memory since that state a and state c are hot
states.
During computations of FSMs, we check whether the

row starting with current state is stored in shared mem-
ory by accessing a hash table Hot_States . We also use a
hash function to determine the index in shared memory for
such a state – specifically, Hot_States[hash(state)] = state .
Here, Hot_States is a hash table used to judge whether the
row for a given state is stored in shared memory. In this
work, hash(state) = (state ∗ SCALE)%HASH_SIZE. Here,
HASH_SIZE is the size of the hash table and SCALE is a
parameter used to distribute states more evenly in the hash
table. If there are any hash conflicts, i.e. two states have the
same hash value, we just keep the one with higher frequency.
If a state is in shared memory, we access the correspond-
ing row in the shared memory to transit to the next state
and avoid a global memory access. Although we have ex-
tra accesses (We need to access the hash table) and extra
computation overhead for the hash function, this strategy
can still achieve performance improvement since the cost of
accessing shared memory is much lower than the cost of a
random access in the global memory.

5 Experimental Results
In this section, we present experimental results on a set of
representative algorithms to demonstrate the effectiveness
of our methods. In the following, we first introduce the setup
of our experiments. We proceed to evaluate the effective-
ness of our parallel merge implementations – specifically,
we compare the speedups of sequential merge and parallel
merge. We also vary the number of speculated states and
assess its impact. Finally, we demonstrate the effectiveness
of our optimizations, which are transforming input data and
caching hot states.

5.1 Experimental Setup
Our experiments were performed on an Nvidia Tesla V100,
which was released in 2018. Major specifications of this GPU

Table 2.Major Specifications of a Nvidia Tesla V100
GPU Name Tesla V100
Architecture Volta

#SM 80
FP32 CUDA Cores/GPU 5120

Memory Interface 4096-bit HBM2
Register File Size / SM (KB) 65536
Max Registers / Thread 255

Shared Memory Size / SM (KB) Configurable up to 96 KB
Max Thread Block Size 1024

Table 3. Applications used in experiments and sequential
execution times

Application Names num_states num_inputs seq. execution time (us)
Huffman Decoding 205 2 2765070
Regular Expression 1 18 7 2188510
Regular Expression 2 29 3 2185900
HTML Tokenization 38 128 2399090

Div 7 7 2 2394750

are shown in Table 2. The GPU is attached to an Intel(R)
Xeon(R) CPU E5-2680 (2013 Ivy Bridge) running at 2.4 GHz.
This machine is also used for sequential CPU runs. The host
operating system for our experiments is CentOS Linux re-
lease 7.4.1708 (Core). We used Clang libtooling to generate
CUDA kernels automatically. The CUDA programs are based
on CUDA 10.1 toolkit and NVCC V10.1.168 is used to compile
our programs. All sequential programs are compiled using
gcc 4.8.5 with "-O3" optimization flag.

Note that the main focus of our work (and thus evaluation)
is to show that 1) we can continue to scale with an increasing
number of threads with parallel merge and 2) our parallel-
merge is more efficient than the sequential-merge. Thus, we
use execution times of a simple, hand-coded, one core (single
thread) program rather than a parallel CPU implementation
as the baseline. We report these baseline execution times in
Table 3. The GPU speedups reported do not include the cost
of transferring data from CPU to GPU. These costs range be-
tween 1.44 to 1.59 seconds, or close to 50% of the sequential
execution times. However, when the same input is applied
to several FSMs, this cost can be amortized. Furthermore,
with technologies like NVLink and use of unified memory
between the CPU and GPU, the data transfer costs can be
much lower. We also repeated each experiment three times
and took the average execution time as the final result. Be-
cause the variance in execution times was very small, i.e
around 1%, the range is not reported in our figures.

5.2 Scalability Studies
In this subsection, we evaluate the effectiveness of our paral-
lel merge method with a set of real applications. We choose
four popular FSM-based applications: Huffman decoding
(Huffman), regular expression matching (RegExp), HTML
tokenization (HTML), and Div7. These algorithms are col-
lected from previous research efforts in this area [10, 18, 22].
Table 3 shows the details of these applications. Since we ex-
perimented on spec-k method, we also show the speculation
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Figure 6. Speculation success rates of different applications

success rates of these applications with different numbers of
speculated states in Figure 6.

5.2.1 Huffman Decoding
Huffman coding is widely used in text compression. This
algorithm takes advantage of non-uniform frequencies of
characters found in texts and encodes the characters to
variable-length bit strings. The mapping from characters
to the variable-length bit strings is obtained by the Huffman
encoding procedure, which is a greedy algorithm that builds
a Huffman tree. Huffman decoding, which is the reverse pro-
cess of Huffman encoding, interprets the bit strings back to
the characters based on the Huffman tree. This process is
very similar to the process of executing state transitions in
an FSM. Thus, we have experimented with the decoding part
of this method. For input data, we randomly combine texts
from the downloaded books from the Project Gutenberg 3.
The specifications of the four input texts are shown in Ta-
ble 4. The first column shows the file names of input texts.
The number in the filename is the index of that book on the
website. The input we generated is called combined in this
table. The second column shows the number of states in the
FSM built by Huffman encoding. After Huffman coding, the
number of bits for the input data is 1243106627.
Figure 7 compares speedups of sequential merge imple-

mentations and parallel merge implementations on combined
inputs. For each number of thread blocks, we report the max-
imal speedup under a particular value of k. As indicated
in the figure, with a sequential merge, it achieves maximal
speedup 60.44 when the number of thread blocks is 20. As
the number of thread blocks increasing, the speedup reduces.
However, speedup would keep increasing and reach 407.29
with 80 thread blocks for parallel merge. We also compared
with the spec-N method. As indicated in Figure 7, although it
is scalable, the maximal speedup is only 15.06, which is much
smaller than the spec-k method. The reason that spec-N is
much less efficient is that the number of states in this FSM is
large (205). As a result, register file is not able to hold such
a large array and data is spilled into local memory, which
causes a large memory access overhead.

Table 4. Specifications of the input texts used for Huffman
decoding.

File Name Number of States in FSM
76.txt.utf-8 179

50247.txt.utf-8 203
98.txt.utf-8 177
74.txt.utf-8 179
combined 205

Figure 7. Comparison of speedups of parallel merge imple-
mentation and sequential merge implementation of Huffman
decoding

Table 5. Regular expressions used in experiments
Regular expressions Reference Name

(.* l . *i .*k .* e)|(.*a .*p .*p .*l .*e) regular expression 1
(.+, . + \.)4|(.+, )4|(. + \.)4 regular expression 2

5.2.2 Regular Expression Matching
Another important application is regular expression match-
ing. We verify effectiveness of our method with two regular
expressions [10, 35] as shown in Table 5. Here, the . in the
patterns represents any character, \. represents the period,
and the superscripts indicates repetitions.
For regular expression matching problem, we search for

all the strings that matches a given pattern. Once a match
is found, the program outputs the position of the match in
the text file. In this experiment, we generated a text file with
1073741824 random low-case characters. Figure 8 and Fig-
ure 9 show experimental results with regular expression 1
and regular expression 2, respectively. As indicated in Fig-
ure 8, it achieves maximal speedups 72.31 when we launch
40 thread blocks with sequential merge. On the contrary, it
achieves speedup 353.99 when there are 80 thread blocks
with a parallel merge implementation. As for spec-N method,
the maximal speedup is just 164.68. For regular expression 2,
the results are similar.

5.2.3 HTML Tokenization
Tokenizing text is another important application of FSM
computations. Specifically, a tokenizer reads an input text
and outputs a corresponding sequence of tokens. In this
work, we performed experiments on HTML tokenization,
which is widely used in web browsers and web crawlers.
3http://www.gutenberg.org/
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Figure 8. Comparison of speedups of parallel merge im-
plementations and sequential merge implementations for
regular expression 1.

Figure 9. Comparison of speedups of parallel merge im-
plementations and sequential merge implementations for
regular expression 2.

Figure 10. Comparison of speedups of parallel merge im-
plementations and sequential merge implementations for
HTML tokenization.

Our implementation uses an FSM with 38 states, and we
generated input data by randomly combiningweb pages from
New York Times website, similar to Huffman decoding. The
total number of characters of the input data is 1060900492.
As indicated in Figure 6, the speculation success rate for this
application is high. Thus, it achieves the best performance
when the number of speculated states is just one. Figure 10
compares the speedups of sequential merge and parallel
merge implementations with different numbers of thread
blocks. As shown in the figure, with a sequential merge, it
achieves maximal speedup 184.44 when the number of thread
block is 40, whereas, with a parallel merge implementation,
it achieves the best performance 420.74 when the number of
thread blocks is 80.We also compared performancewith spec-
N method. Although its scalability is also good, however, the
maximal speedup it achieves is just 103.46, much lower than
thhe spec-k method.

Figure 11. Comparison of speedups of parallel merge imple-
mentations and sequential merge implementations for Div
7.

Figure 12. Comparison of speedups with different values of
k for regular expression 1 .

Figure 13. Comparison of speedups with different values of
k for regular expression 2.

5.2.4 Div 7
Div 7 is a classic FSM which is illustrated in previous work
[22, 34, 35]. This application is to test if a binary sequence
is divisible by seven. The input data we tested is a random
binary sequence whose length is also 1073741824. In this case,
for any input symbol, states would transit to seven different
states. Thus, for a random binary sequence, the speculation
success rate is linear with the number of guesses, which is
also indicated in Figure 6. However, since the number of
states is small and no pair of states converge for any input,
we adopt spec-Nmethod for Div 7 so that speculation success
rate is 100%. Figure 11 compares the speedups of sequential
merge and parallel merge implementations with different
numbers of thread blocks. As we can see, with sequential
merge, the maximal speedup is 104.84, when the number of
thread blocks is 20. On the other hand, with parallel merge,
it achieves maximal speedups, which is 397.93, when we
launch 80 thread blocks.
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Figure 14. Comparison of speedups with and without data
transformation

5.3 Discussion of the impact of k
In the applications that we have studied, the value of k has a
significant performance impact on parallel merge implemen-
tations. To have a better understanding of it, we study the
case of regular expression matching. Specifically, we com-
pare the speedups with different values of k for both regular
expression 1 and regular expression 2. The experimental re-
sults are shown in Figure 12 and Figure 13. As we can see, for
regular expression 1, it always achieves the best performance
when we set k as 8 while for regular expression 2, it achieves
maximal speedups when we set k as 1. For regular expression
1, as we increase the value of k, the speculation success rate
increases first, reaching a value close to 1 when k is 8. Thus,
it gets maximal speedup when k is 8. On the other side, for
regular expression 2, the speculation success rate is around 1
even when k is 1. When we continue to increase the value of
k, the amount of redundant work also increases. As a result,
it achieves the best performance with k is equal to 1.

5.4 Effect of Data Transformation
Figure 14 compares the speedups with and without data
transformations for parallel merge implementations of these
applications. For each case, we only choose the maximal
speedups across different numbers of thread blocks and dif-
ferent values of k. As indicated in the figure, the performance
is several times better with data transformations because of
coalesced memory accesses.

5.5 Effect of Caching Rows Starting with Hot States
To demonstrate the effect of caching rows starting with hot
states, we compare the speedups with and without caching
for Huffman decoding in Figure 15. We use this application
to do a case study because it has the largest transition ta-
ble among all our applications. As shown in the figure, it
achieves nearly a 50% speedup with our caching strategy.

6 Related Work
In this section, we discuss related efforts on parallelizing FSM
computations and some of the other closed related work on
optimizing irregular applications on GPUs.

Figure 15. Effect of caching rows starting with hot rows for
Huffman decoding.

Parallelization Work on FSMs: Extensive research work
has been done on parallelizing FSM computations [4, 9, 11–
15, 21, 27, 33–36]. Among them, speculation is a classical
method. Prabhu et al. [21] proposed a look-back strategy
to predict the initial state and described two language con-
structs to apply speculation strategy easily. Several other ef-
forts were specific to a single application: Klein et al. [12] ap-
ply speculative parallelization forHuffman decoding, Luchaup
et al. [14, 15] on regular expression matching, and Jones et al.
[11] for browser front-end. Zhao et al. [35] proposed a prin-
cipled speculation method that pre-analyzes FSMs to get the
application-specific information and speculates initial states
based on a probabilistic model. They further propose an on-
the-fly principled speculation technique [34] to remove the
overheads of offline training. However, these works assume
that the states in an FSM are likely to converge. Another
solution to parallelize FSM computations is to apply the par-
allel prefix sum algorithm [3, 9, 13]. Mytkowicz et al. [18]
proposed to reduce the redundancy based on state conver-
gence property because they observe that states in most
FSMs converge to no more than 16 distinct states after a
certain length of input data. Finally, Jiang et al. proposed
enumerative speculation that we have discussed extensively.
GPU Acceleration of Irregular Applications: There has
been a significant amount of research work on accelerating
irregular applications on GPUs – we only introduce research
works that are closely related to our work. Wang et al. [28]
conducted a quantitative analysis of the performance impact
of shuffle instructions on GPUs and use shuffle instructions
to optimize two sequence alignment algorithms. Xiao et al.
[30] proposed a lock-free implementation of global synchro-
nization, where the kernel-launch overhead is significantly
reduced. Based on this, Gupta et al. [8] proposed the con-
cept of persistent kernel execution and discussed when and
why this approach is beneficial. Yan et al. [31] implement
a matrix-based intra-block scan approach, which is com-
munication efficient. They also proposed to optimize the
implementation of scan on both AMD and NVIDIA GPUs
automatically. Merrill et al. proposed a variable look-back
strategy to minimize the waiting for carries. Instead of wait-
ing for the global carry values from the prior chunk, they
proposed to use the most recent available global carries and
the local carries from chunks that follow that chunk. Maleki
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et al. [17] proposed an efficient prefix sum implementation,
which is named SAM. In addition, [17] supports two general-
ized prefix sums, higher-order prefix sums and tuple-based
prefix sums. Further, they generalize simple prefix sum im-
plementations to linear recurrences and propose an efficient
implementation of any linear recurrence in [16].

7 Conclusion and Future Work
This paper builds on two observations. First, the enumer-
ative speculation or spec-k method offers a continuum in
approaching parallel FSM computations. Second, scaling the
merge process is challenging when speculations are involved.
We have focused on scaling spec-k approach for FSM compu-
tations on many-cores. We have further optimized the imple-
mentation by focusing on nature of processing and memory
hierarchy on GPUs. Our results show that the parallel merge
implementation allows scaling of FSM computations. We
also show significant benefits of the optimization methods
we have developed.

Our evaluation also demonstrates that the value of k has
a significant impact on the performance and we also discuss
this impact briefly with the example of regular expression
matching. However, how to choose the optimal value of k
remains a challenging problem. In our future work, we will
develop a cost model, which considers the properties of the
FSMs, the architecture of GPUs and property of the input
data so that we can decide the optimal value of k based on
the model.
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